Sulforaphane

Last updated

Contents

Sulforaphane
Sulforaphane.png
Sulforaphane-3D-balls.png
Sulforaphane-3D-vdW.png
Names
Preferred IUPAC name
1-Isothiocyanato-4-(methanesulfinyl)butane
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C6H11NOS2/c1-10(8)5-3-2-4-7-6-9/h2-5H2,1H3 X mark.svgN
    Key: SUVMJBTUFCVSAD-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C6H11NOS2/c1-10(8)5-3-2-4-7-6-9/h2-5H2,1H3
    Key: SUVMJBTUFCVSAD-UHFFFAOYAY
  • CS(=O)CCCCN=C=S
Properties
C6H11NOS2
Molar mass 177.29 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sulforaphane (sometimes sulphoraphane in British English) is a compound within the isothiocyanate group of organosulfur compounds. [1] It is produced when the enzyme myrosinase transforms glucoraphanin, a glucosinolate, into sulforaphane upon damage to the plant (such as from chewing or chopping during food preparation), which allows the two compounds to mix and react.

Sulforaphane is present in cruciferous vegetables, such as broccoli, Brussels sprouts, and cabbage. [1]

Sulforaphane has two possible stereoisomers due to the presence of a stereogenic sulfur atom. [2]

The R-sulforaphane enantiomer occurs naturally, while the S-sulforaphane can be synthesized. [3]

Glucoraphanin.png
Glucoraphanin, the glucosinolate precursor to sulforaphane

Occurrence and isolation

Sulforaphane occurs in broccoli sprouts, which, among cruciferous vegetables, have the highest concentration of glucoraphanin, the precursor to sulforaphane. [1] [4] It is also found in cabbage, cauliflower, Brussels sprouts, bok choy, kale, collards, mustard greens, and watercress. [1]

Research

Although there has been some basic research on how sulforaphane might have effects in vivo , there is no clinical evidence that consuming cruciferous vegetables and sulforaphane affects the risk of cancer or any other disease, as of 2017. [1] [5] [ needs update ]

See also

Related Research Articles

<span class="mw-page-title-main">Cabbage</span> Leafy vegetable in the flowering plant family Brassicaceae

Cabbage, comprising several cultivars of Brassica oleracea, is a leafy green, red (purple), or white biennial plant grown as an annual vegetable crop for its dense-leaved heads. It is descended from the wild cabbage, and belongs to the "cole crops" or brassicas, meaning it is closely related to broccoli and cauliflower ; Brussels sprouts ; and Savoy cabbage.

<span class="mw-page-title-main">Broccoli</span> Edible green plant in the cabbage family

Broccoli is an edible green plant in the cabbage family whose large flowering head, stalk and small associated leaves are eaten as a vegetable. Broccoli is classified in the Italica cultivar group of the species Brassica oleracea. Broccoli has large flower heads, or florets, usually dark green, arranged in a tree-like structure branching out from a thick stalk which is usually light green. The mass of flower heads is surrounded by leaves. Broccoli resembles cauliflower, which is a different but closely related cultivar group of the same Brassica species.

<span class="mw-page-title-main">Isothiocyanate</span> Chemical group (–N=C=S)

In organic chemistry, isothiocyanate is the functional group −N=C=S, formed by substituting the oxygen in the isocyanate group with a sulfur. Many natural isothiocyanates from plants are produced by enzymatic conversion of metabolites called glucosinolates. These natural isothiocyanates, such as allyl isothiocyanate, are also known as mustard oils. An artificial isothiocyanate, phenyl isothiocyanate, is used for amino acid sequencing in the Edman degradation.

<span class="mw-page-title-main">Brussels sprout</span> Vegetable

The Brussels sprout is a member of the Gemmifera cultivar group of cabbages, grown for its edible buds.

<span class="mw-page-title-main">Kale</span> Form of cabbage with green or purple leaves

Kale, also called leaf cabbage, belongs to a group of cabbage cultivars primarily grown for their edible leaves. It has also been used as an ornamental plant.

<i>Brassica oleracea</i> Species of plant

Brassica oleracea is a plant species from family Brassicaceae that includes many common cultivars used as vegetables, such as cabbage, broccoli, cauliflower, kale, Brussels sprouts, collard greens, Savoy cabbage, kohlrabi, and gai lan.

<span class="mw-page-title-main">3,3'-Diindolylmethane</span> Chemical compound

3,3′-Diindolylmethane (DIM) is a compound derived from the digestion of indole-3-carbinol, found in cruciferous vegetables, such as broccoli, Brussels sprouts, cabbage and kale. It and its parent compound – indole-3-carbinol – are under laboratory research to determine their possible biological properties, particularly in anti-cancer mechanisms. DIM is sold as a dietary supplement.

<span class="mw-page-title-main">Allyl isothiocyanate</span> Chemical compound

Allyl isothiocyanate (AITC) is a naturally occurring unsaturated isothiocyanate. The colorless oil is responsible for the pungent taste of Cruciferous vegetables such as mustard, radish, horseradish, and wasabi. This pungency and the lachrymatory effect of AITC are mediated through the TRPA1 and TRPV1 ion channels. It is slightly soluble in water, but more soluble in most organic solvents.

<span class="mw-page-title-main">Glucoraphanin</span> Chemical compound

Glucoraphanin is a glucosinolate found in broccoli, mustard and other cruciferous vegetables.

<span class="mw-page-title-main">Glucosinolate</span> Class of chemical compounds

Glucosinolates are natural components of many pungent plants such as mustard, cabbage, and horseradish. The pungency of those plants is due to mustard oils produced from glucosinolates when the plant material is chewed, cut, or otherwise damaged. These natural chemicals most likely contribute to plant defence against pests and diseases, and impart a characteristic bitter flavor property to cruciferous vegetables.

<span class="mw-page-title-main">Cruciferous vegetables</span> Vegetables of the family Brassicaceae

Cruciferous vegetables are vegetables of the family Brassicaceae with many genera, species, and cultivars being raised for food production such as cauliflower, cabbage, kale, garden cress, bok choy, broccoli, Brussels sprouts, mustard plant and similar green leaf vegetables. The family takes its alternative name from the shape of their flowers, whose four petals resemble a cross.

<span class="mw-page-title-main">Indole-3-carbinol</span> Chemical compound

Indole-3-carbinol (I3C, C9H9NO) is produced by the breakdown of the glucosinolate glucobrassicin, which can be found at relatively high levels in cruciferous vegetables such as broccoli, cabbage, cauliflower, brussels sprouts, collard greens and kale. It is also available in dietary supplements. Indole-3-carbinol is the subject of on-going biomedical research into its possible anticarcinogenic, antioxidant, and anti-atherogenic effects. Research on indole-3-carbinol has been conducted primarily using laboratory animals and cultured cells. Limited and inconclusive human studies have been reported. A recent review of the biomedical research literature found that "evidence of an inverse association between cruciferous vegetable intake and breast or prostate cancer in humans is limited and inconsistent" and "larger randomized controlled trials are needed" to determine if supplemental indole-3-carbinol has health benefits.

<span class="mw-page-title-main">Glucobrassicin</span> Chemical compound

Glucobrassicin is a type of glucosinolate that can be found in almost all cruciferous plants, such as cabbages, broccoli, mustards, and woad. As for other glucosinolates, degradation by the enzyme myrosinase is expected to produce an isothiocyanate, indol-3-ylmethylisothiocyanate. However, this specific isothiocyanate is expected to be highly unstable, and has indeed never been detected. The observed hydrolysis products when isolated glucobrassicin is degraded by myrosinase are indole-3-carbinol and thiocyanate ion, which are envisioned to result from a rapid reaction of the unstable isothiocyanate with water. However, a large number of other reaction products are known, and indole-3-carbinol is not the dominant degradation product when glucosinolate degradation takes place in crushed plant tissue or in intact plants.

<span class="mw-page-title-main">Diamondback moth</span> Species of moth

The diamondback moth, sometimes called the cabbage moth, is a moth species of the family Plutellidae and genus Plutella. The small, grayish-brown moth sometimes has a cream-colored band that forms a diamond along its back. The species may have originated in Europe, South Africa, or the Mediterranean region, but it has now spread worldwide.

<span class="mw-page-title-main">Myrosinase</span> Class of enzymes

Myrosinase is a family of enzymes involved in plant defense against herbivores, specifically the mustard oil bomb. The three-dimensional structure has been elucidated and is available in the PDB.

<span class="mw-page-title-main">Broccoli sprouts</span> Edible young broccoli plants

Broccoli sprouts are three- to four-day-old broccoli plants that look like alfalfa sprouts, but taste like radishes.

<span class="mw-page-title-main">Goitrin</span> Chemical compound

Goitrin is an organosulfur compound classified as a derivative of oxazolidine and as a cyclic thiocarbamate. It reduces the production of thyroid hormones such as thyroxine. It is found in cruciferous vegetables such as cabbage, brussels sprouts and rapeseed oil, and is formed by the hydrolysis of a glucosinolate: progoitrin or 2-hydroxy-3-butenyl glucosinolate. The unstable isothiocyanate derived from the latter glucosinolate spontaneously cyclizes to goitrin, because the hydroxy group is situated in proximity to the isothiocyanate group. Hence, the oxygen in the molecule stems from the hydroxy group of the original unstable isothiocyanate. Plants containing this specific glucosinolate have goitrogenic potential due to the goitrin and thiocyanate they contain. However, they do not seem to alter thyroid function in humans at realistic amounts in the diet.

<span class="mw-page-title-main">Paul Talalay</span> American cancer researcher and pharmacologist

Paul Talalay was the John Jacob Abel Distinguished Service Professor of Pharmacology and director of the Laboratory for Molecular Sciences at the Johns Hopkins School of Medicine in Baltimore. He was the founder of the Brassica Chemoprotection Laboratory for the study of edible plants that induce protective enzyme activity in the body and may help prevent the development of cancer.

Erucin is a dietary isothiocyanate present in cruciferous vegetables that is considered a potential cancer chemopreventive nutraceutical.

References

  1. 1 2 3 4 5 "Isothiocyanates". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 1 April 2017. Retrieved 14 July 2022.
  2. Janczewski Ł (March 2022). "Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity". Molecules. 27 (5): 1750. doi: 10.3390/molecules27051750 . PMC   8911885 . PMID   35268851.
  3. Zhang Y, Lu Q, Li N, Xu M, Miyamoto T, Liu J (March 2022). "Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway". npj Breast Cancer. 8 (1): 40. doi:10.1038/s41523-022-00402-4. PMC   8948359 . PMID   35332167.
  4. Houghton CA, Fassett RG, Coombes JS (November 2013). "Sulforaphane: translational research from laboratory bench to clinic". Nutrition Reviews. 71 (11): 709–726. doi: 10.1111/nure.12060 . PMID   24147970.
  5. van Die MD, Bone KM, Emery J, Williams SG, Pirotta MV, Paller CJ (April 2016). "Phytotherapeutic interventions in the management of biochemically recurrent prostate cancer: a systematic review of randomised trials". BJU International. 117 (Suppl 4): 17–34. doi: 10.1111/bju.13361 . PMC   8631186 . PMID   26898239.