Phenyl isothiocyanate

Last updated
Phenyl isothiocyanate
Phenyl isothiocyanate.svg
Phenyl-isothiocyanate-3D-balls.png
Names
Preferred IUPAC name
Isothiocyanatobenzene [1]
Other names
Phenyl isothiocyanate [1]
Thiocarbanil
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.853 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C7H5NS/c9-6-8-7-4-2-1-3-5-7/h1-5H X mark.svgN
    Key: QKFJKGMPGYROCL-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C7H5NS/c9-6-8-7-4-2-1-3-5-7/h1-5H
    Key: QKFJKGMPGYROCL-UHFFFAOYAC
  • C1=CC=C(C=C1)N=C=S
Properties
C7H5NS
Molar mass 135.19 g/mol
AppearanceColorless liquid with a pungent odor [2]
Density 1.1288 g/cm3 [2]
Melting point −21 °C (−6 °F; 252 K) [3]
Boiling point 221 °C (430 °F; 494 K) [3]
negligible [2]
Solubility ethanol, ether [3]
-86.0·10−6 cm3/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
toxic, flammable [2]
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-silhouette.svg GHS-pictogram-acid.svg [3]
Danger [3]
H301, H311, H314, H317, H331, H334, H361 [3]
P261, P280, P301+P310, P301+P330+P331, P302+P350, P304+P341, P305+P351+P338, P310, P312, P342+P311 [3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Phenyl isothiocyanate (PITC) is a reagent used in reversed phase HPLC. PITC is less sensitive than o-phthaldehyde (OPA) and cannot be fully automated. PITC can be used for analysing secondary amines, unlike OPA. It is also known as Edman's reagent and is used in Edman degradation.

Commercially available, this compound may be synthesized by the reaction of aniline with carbon disulfide and concentrated ammonia to give the ammonium dithiocarbamate salt of aniline in the first step, which on further reaction with lead(II) nitrate gives phenyl isothiocyanate: [4]

Synthesis phenylisothiocyanate 1.svg

Another method of synthesizing this reagent involves a Sandmeyer reaction using aniline, sodium nitrite and copper(I) thiocyanate.

A use of phenylisothiocyanate is in the synthesis of linogliride. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Aniline</span> Organic compound (C₆H₅NH₂); simplest aromatic amine

Aniline is an organic compound with the formula C6H5NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical synthesis. Its main use is in the manufacture of precursors to polyurethane, dyes, and other industrial chemicals. Like most volatile amines, it has the odor of rotten fish. It ignites readily, burning with a smoky flame characteristic of aromatic compounds. It is toxic to humans.

<span class="mw-page-title-main">Quinoline</span> Chemical compound

Quinoline is a heterocyclic aromatic organic compound with the chemical formula C9H7N. It is a colorless hygroscopic liquid with a strong odor. Aged samples, especially if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline itself has few applications, but many of its derivatives are useful in diverse applications. A prominent example is quinine, an alkaloid found in plants. Over 200 biologically active quinoline and quinazoline alkaloids are identified. 4-Hydroxy-2-alkylquinolines (HAQs) are involved in antibiotic resistance.

<span class="mw-page-title-main">Isothiocyanate</span> Chemical group (–N=C=S)

In organic chemistry, isothiocyanate is a functional group as found in compounds with the formula R−N=C=S. Isothiocyanates are the more common isomers of thiocyanates, which have the formula R−S−C≡N.

<span class="mw-page-title-main">Acetanilide</span> Chemical compound

Acetanilide is an odourless solid chemical of leaf or flake-like appearance. It is also known as N-phenylacetamide, acetanil, or acetanilid, and was formerly known by the trade name Antifebrin.

<span class="mw-page-title-main">Sodium amide</span> Chemical compound

Sodium amide, commonly called sodamide, is the inorganic compound with the formula NaNH2. It is a salt composed of the sodium cation and the azanide anion. This solid, which is dangerously reactive toward water, is white, but commercial samples are typically gray due to the presence of small quantities of metallic iron from the manufacturing process. Such impurities do not usually affect the utility of the reagent. NaNH2 conducts electricity in the fused state, its conductance being similar to that of NaOH in a similar state. NaNH2 has been widely employed as a strong base in organic synthesis.

<span class="mw-page-title-main">Acetyl chloride</span> Organic compound (CH₃COCl)

Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.

<span class="mw-page-title-main">Oxalyl chloride</span> Chemical compound

Oxalyl chloride is an organic chemical compound with the formula Cl−C(=O)−C(=O)−Cl. This colorless, sharp-smelling liquid, the diacyl chloride of oxalic acid, is a useful reagent in organic synthesis.

Oxetane, or 1,3-propylene oxide, is a heterocyclic organic compound with the molecular formula C
3
H
6
O
, having a four-membered ring with three carbon atoms and one oxygen atom.

<span class="mw-page-title-main">Selenium dioxide</span> Chemical compound

Selenium dioxide is the chemical compound with the formula SeO2. This colorless solid is one of the most frequently encountered compounds of selenium. It is used in making specialized glasses as well as a reagent in organic chemistry.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols. An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

In organic chemistry, umpolung or polarity inversion is the chemical modification of a functional group with the aim of the reversal of polarity of that group. This modification allows secondary reactions of this functional group that would otherwise not be possible. The concept was introduced by D. Seebach and E.J. Corey. Polarity analysis during retrosynthetic analysis tells a chemist when umpolung tactics are required to synthesize a target molecule.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

<span class="mw-page-title-main">Trimethyl phosphite</span> Chemical compound

Trimethyl phosphite is an organophosphorus compound with the formula P(OCH3)3, often abbreviated P(OMe)3. It is a colorless liquid with a highly pungent odor. It is the simplest phosphite ester and finds used as a ligand in organometallic chemistry and as a reagent in organic synthesis. The molecule features a pyramidal phosphorus(III) center bound to three methoxy groups.

Selenoxide elimination is a method for the chemical synthesis of alkenes from selenoxides. It is most commonly used to synthesize α,β-unsaturated carbonyl compounds from the corresponding saturated analogues. It is mechanistically related to the Cope reaction.

<span class="mw-page-title-main">Sodium tetraphenylborate</span> Chemical compound

Sodium tetraphenylborate is the organic compound with the formula NaB(C6H5)4. It is a salt, wherein the anion consists of four phenyl rings bonded to boron. This white crystalline solid is used to prepare other tetraphenylborate salts, which are often highly soluble in organic solvents. The compound is used in inorganic and organometallic chemistry as a precipitating agent for potassium, ammonium, rubidium, and caesium ions, and some organic nitrogen compounds.

<span class="mw-page-title-main">Michler's ketone</span> Chemical compound

Michler's ketone is an organic compound with the formula of [(CH3)2NC6H4]2CO. This electron-rich derivative of benzophenone is an intermediate in the production of dyes and pigments, for example Methyl violet. It is also used as a photosensitizer. It is named after the German chemist Wilhelm Michler.

IMes is an abbreviation for an organic compound that is a common ligand in organometallic chemistry. It is an N-heterocyclic carbene (NHC). The compound, a white solid, is often not isolated but instead is generated upon attachment to the metal centre.

<span class="mw-page-title-main">Propargyl bromide</span> Chemical compound

Propargyl bromide, also known as 3-bromo-prop-1-yne, is an organic compound with the chemical formula HC≡CCH2Br. A colorless liquid, it is a halogenated organic compound consisting of propyne with a bromine substituent on the methyl group. It has a lachrymatory effect, like related compounds. The compound is used as a reagent in organic synthesis.

<span class="mw-page-title-main">Ynone</span> Organic compounds of the form RC≡CC(=O)R’

In organic chemistry, an ynone is an organic compound containing a ketone functional group and a C≡C triple bond. Many ynones are α,β-ynones, where the carbonyl and alkyne groups are conjugated. Capillin is a naturally occurring example. Some ynones are not conjugated.

An organic azide is an organic compound that contains an azide functional group. Because of the hazards associated with their use, few azides are used commercially although they exhibit interesting reactivity for researchers. Low molecular weight azides are considered especially hazardous and are avoided. In the research laboratory, azides are precursors to amines. They are also popular for their participation in the "click reaction" between an azide and an alkyne and in Staudinger ligation. These two reactions are generally quite reliable, lending themselves to combinatorial chemistry.

References

  1. 1 2 Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 665. doi:10.1039/9781849733069-FP001 (inactive 2024-06-30). ISBN   978-0-85404-182-4.{{cite book}}: CS1 maint: DOI inactive as of June 2024 (link)
  2. 1 2 3 4 "Phenyl isothiocyanate - CAS # 103-72-0".
  3. 1 2 3 4 5 6 7 "Message".
  4. F. B. Dains, R. Q. Brewster, and C. P. Olander. "Phenyl isothiocyanate". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 1, p. 447.
  5. U.S. patent 4211867A