Names | |||
---|---|---|---|
Preferred IUPAC name 3-[(Prop-2-en-1-yl)disulfanyl]prop-1-ene | |||
Other names Diallyl disulfide Garlicin 1,2-Diallyldisulfane (not recommended) 4,5-Dithia-1,7-octadiene | |||
Identifiers | |||
3D model (JSmol) | |||
1699241 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.016.862 | ||
EC Number |
| ||
217847 | |||
KEGG | |||
PubChem CID | |||
UNII | |||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
C6H10S2 | |||
Molar mass | 146.27 g·mol−1 | ||
Appearance | Yellowish clear liquid [1] | ||
Odor | Intense garlic smell [1] | ||
Density | 1.01 g/cm3 [2] | ||
Boiling point | 180 °C (356 °F; 453 K) | ||
soluble in ethanol and oils [1] | |||
Hazards | |||
GHS labelling: | |||
Danger | |||
H226, H301, H315, H317, H319 | |||
P210, P233, P240, P241, P242, P243, P261, P264, P270, P272, P280, P301+P310, P302+P352, P303+P361+P353, P305+P351+P338, P321, P330, P332+P313, P333+P313, P337+P313, P362, P363, P370+P378, P403+P235, P405, P501 | |||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Diallyl disulfide (DADS or 4,5-dithia-1,7-octadiene) is an organosulfur compound derived from garlic and a few other plants in the genus Allium . [3] Along with diallyl trisulfide and diallyl tetrasulfide, it is one of the principal components of the distilled oil of garlic. It is a yellowish liquid which is insoluble in water and has a strong garlic odor. It is produced during the decomposition of allicin, which is released upon crushing garlic and other plants of the family Alliaceae. Diallyl disulfide has many of the health benefits of garlic, but it is also an allergen causing garlic allergy. Highly diluted, it is used as a flavoring in food. It decomposes in the human body into other compounds such as allyl methyl sulfide.
In 1844, Theodor Wertheim separated by steam distillation a pungent-smelling substance from garlic and named it "allyl sulfur." However, only in 1892 could Friedrich Wilhelm Semmler identify diallyl disulfide as one of the components of distilled garlic oil. The natural precursor of diallyl disulfide, allicin, was discovered in 1944 by Chester J. Cavallito and John Hays Bailey. In 1947, A. Stoll and E. Seebeck found that allicin in turn can be produced from the cysteine derivative alliin using the enzyme alliinase. [3] [4]
Diallyl disulfide and the related trisulfide are produced by decomposition of allicin, which is released upon breaking the cells of the Alliaceae plants, especially garlic. The diallyl disulfide yield is the highest for the steam distillation of garlic bulbs which contain about 2 wt.% of diallyl disulfide-rich oil. Diallyl disulfide can also be extracted from garlic leaves, but their oil content is significantly lower at 0.06 wt.%. [5] [6]
On an industrial scale, diallyl disulfide is produced from sodium disulfide and allyl bromide or allyl chloride at temperatures of 40–60 °C in an inert gas atmosphere; sodium disulfide is generated in situ by reacting sodium sulfide with sulfur. The reaction is exothermic and its theoretical efficiency of 88% has been achieved in practice. [7]
Smaller quantities can be synthesized from the same starting materials, but in air and using tetrabutylammonium bromide as a catalyst. The corresponding yield is below 82%. [8] The major problem, both in the industrial synthesis and in the extraction from plants, is separation of diallyl disulfide from higher sulfides (diallyl trisulfide (DATS), etc.). They have very similar physical properties and therefore, a typical commercial product contains only 80% of diallyl disulfide. The conversion of allicin to diallyl disulfide and trisulfide takes place particularly rapidly above 37 °C. [9]
Diallyl disulfide has a strong garlic smell. It is a clear, yellowish liquid which boils at 138–139 °C (for the typical 80% purity) and has its flash point at 50 °C, a density of about 1.0 g/mL and a vapor pressure of 1 mmHg at 20 °C. It is non-polar; therefore, diallyl disulfide is insoluble in water and is soluble in fats, oils, lipids, and non-polar solvents such as hexane or toluene. [1] [2]
Diallyl disulfide can be readily oxidized to allicin with hydrogen peroxide or peracetic acid. Allicin in turn can hydrolyze giving diallyl disulfide and trisulfide. Reaction of diallyl disulfide with liquid sulfur gives a mixture containing diallyl polysulfides with as many as 22 sulfur atoms in a continuous chain identified. [3] [10] When diallyl disulfide is heated it decomposes giving a complex mixture. The carbon-sulfur bond of diallyl disulfide is 16 kcal mol−1 weaker than the sulfur-sulfur bond (46 kcal mol−1 versus 62 kcal mol−1, respectively), with the consequence that on heating diallyl disulfide gives the allyldithio radical (AllSS•), which through addition to the double bonds in diallyl disulfide followed by fragmentation and subsequent reactions generates numerous organosulfur compounds, many of which are found in trace amounts in distilled garlic oil. [3] [11] In the presence of a catalyst, diallyl disulfide can combine with alkyl halides forming 1-alkylthio-3-allylthio-1-propene and 1,3-di(alkylthio)propene. [12]
In the presence of iron chloride or copper chloride catalyst, or of liquid sulfur at 120 °C [3] [13] Diallyl disulfide can be used as a precursor for the synthesis of higher diallyl polysulfides (polysulfanes). In agriculture, diallyl disulfide and related diallyl polysulfides show useful activity as environmentally-benign nematicides. [3] Diallyl disulfide is also a starting material for the synthesis of allicin. In the food industry, diallyl disulfide is used to improve the taste of meat, vegetables and fruits. [1] [14]
The unpleasant smell of diallyl disulfide is perceived through the transient receptor potential cation channel, member A1 (TRPA1). This ion channel had long been present not only in humans and animals, but even in fungi. Thus, Alliaceae plants have likely developed the diallyl disulfide-TRPA1 protection mechanism against predators at the early stages of the evolution. [15] [16]
Diallyl disulfide is an efficient agent for detoxication of the cells. It significantly increases the production of the enzyme glutathione S-transferase (GST), which binds electrophilic toxins in the cell. Garlic therefore supports, for example, the detoxification function of liver cells in vitro and protects nerve cells from oxidative stress, also in vitro. [17] [18] [19] [20] [21] [22] [23] [24] The detoxification effect may prevent symptoms of inflammation. This was confirmed in a study on rats where prolonged administration of diallyl disulfide protected poisoning of their intestinal cells. This study also showed that certain side effects of high doses of garlic oil are not attributable to the diallyl disulfide. [25] By supporting the detoxification activity in the liver, diallyl disulfide might offer liver protection during the chemotherapy, e.g. against cyanide detoxification. [26] [27]
The release of organosulfur compounds upon destruction of Alliaceae plant cells has great importance, because of the antimicrobial, insecticidal and larvicidal properties of those compounds. [28] In particular, diallyl disulfide is the main reason for inhibiting the growth of molds and bacteria by garlic oil. It is also acts against the stomach ulcer germ Helicobacter pylori , however not as efficiently as allicin. [29] [30] Because of its antimicrobial effects, diallyl disulfide, together with tobramycin, is included in preparations which are used for selective decontamination of the organs (e.g. gut) before surgical operations. A clinical study showed that such preparations prevent endotoxemia in heart valve operations. [31]
Garlic can prevent colorectal cancer, [32] and several studies revealed that diallyl disulfide is a major component responsible for this action. The effect is dose dependent as demonstrated on mice. [33] [34] Diallyl disulfide affects cancer cells much more strongly than normal cells. [35] It also results in a strong and dose-dependent accumulation of several agents, such as reactive oxygen species, which activate enzyme and lead to destruction of cancer cells. [36]
There is evidence that garlic may prevent the development of cardiovascular diseases. A possible reason for some of these diseases, such as atherosclerosis or coronary heart disease is oxidative stress. The latter is reduced by diallyl disulfide by assisting in the detoxification of the cell, as well as some other mechanisms. [4] By activating the TRPA1 ion channel, diallyl disulfide leads to a short-term lowering of blood pressure. [15]
Diallyl disulfide is a skin irritant and an allergen. In particular, it is the main cause of garlic allergy (allergic contact dermatitis to garlic). The allergy usually starts at the fingertips and cannot be prevented by wearing gloves because diallyl disulfide penetrates through most commercial glove types. [37] [38] [39] [40]
The median lethal dose (LD50) for oral intake in rats is 260 mg per kg of body weight and it is 3.6 g/kg for dermal intake. High doses of 5 g/kg placed on the skin of cats cause death through hemolytic anemia. [1] [41]
Diallyl disulfide can be easily detected in the air or in the blood with gas chromatography. [42] [43]
Sulfur (also spelled sulphur in British English) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with the chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.
Garlic is a species of bulbous flowering plant in the genus Allium. Its close relatives include the onion, shallot, leek, chive, Welsh onion, and Chinese onion. It is native to Central Asia, South Asia and northeastern Iran and has long been used as a seasoning worldwide, with a history of several thousand years of human consumption and use. It was known to ancient Egyptians and has been used as both a food flavoring and a traditional medicine. China produced 73% of the world's supply of garlic in 2021.
In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".
Allicin is an organosulfur compound obtained from garlic. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin is unstable and quickly changes into a series of other sulfur-containing compounds such as diallyl disulfide. Allicin is an antifeedant, i.e. the defense mechanism against attacks by pests on the garlic plant.
Allyl isothiocyanate (AITC) is a naturally occurring unsaturated isothiocyanate. The colorless oil is responsible for the pungent taste of cruciferous vegetables such as mustard, radish, horseradish, and wasabi. This pungency and the lachrymatory effect of AITC are mediated through the TRPA1 and TRPV1 ion channels. It is slightly soluble in water, but more soluble in most organic solvents.
Ajoene is an organosulfur compound found in garlic (Allium sativum) extracts. It is a colorless liquid that contains sulfoxide and disulfide functional groups. The name (and pronunciation) is derived from "ajo", the Spanish word for garlic. It is found as a mixture of up to four stereoisomers, which differ in terms of the stereochemistry of the central alkene (E- vs Z-) and the chirality of the sulfoxide sulfur (R- vs S-).
Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.
Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.
Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.
Alliin is a sulfoxide that is a natural constituent of fresh garlic. It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene. Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds.
Stainless steel soap is a piece of stainless steel, in the form of a soap bar or other hand-held shape. Its purported purpose is to neutralize or reduce strong odors such as those from handling garlic, onion, durian, guava, salami, or fish.
Sulfur assimilation is the process by which living organisms incorporate sulfur into their biological molecules. In plants, sulfate is absorbed by the roots and then transported to the chloroplasts by the transipration stream where the sulfur are reduced to sulfide with the help of a series of enzymatic reactions. Furthermore, the reduced sulfur is incorporated into cysteine, an amino acid that is a precursor to many other sulfur-containing compounds. In animals, sulfur assimilation occurs primarily through the diet, as animals cannot produce sulfur-containing compounds directly. Sulfur is incorporated into amino acids such as cysteine and methionine, which are used to build proteins and other important molecules.
In chemistry, a sulfenic acid is an organosulfur compound and oxoacid with the general formula R−S−OH. It is the first member of the family of organosulfur oxoacids, which also include sulfinic acids and sulfonic acids, respectively. The base member of the sulfenic acid series with R = H is hydrogen thioperoxide.
In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R. Thiolsulfinates are also named as alkanethiosulfinic acid esters.
Garlic allergy or allergic contact dermatitis to garlic is a common inflammatory skin condition caused by contact with garlic oil or dust. It mostly affects people who cut and handle fresh garlic, such as chefs, and presents on the tips of the thumb, index and middle fingers of the non-dominant hand. The affected fingertips show an asymmetrical pattern of fissure as well as thickening and shedding of the outer skin layers, which may progress to second- or third-degree burn of injured skin.
Vinyldithiins, more precisely named 3-vinyl-4H-1,2-dithiin and 2-vinyl-4H-1,3-dithiin, are organosulfur phytochemicals formed in the breakdown of allicin from crushed garlic (Allium sativum). Vinyldithiins are Diels-Alder dimers of thioacrolein, H2C=CHCH=S, formed in turn by decomposition of allicin. In garlic supplements, vinyldithiins are only found in garlic oil macerates that are made by incubation of crushed garlic in oil.
Garlic breath is halitosis resulting from the consumption of garlic.
Chester J. Cavallito was an American organic chemist. He was particularly known for his work on the chemistry of garlic. Beginning in 1944, with his colleagues, he reported on the isolation from crushed garlic, synthesis and antibiotic activity of a compound he named allicin. Cavallito established that allicin was a member of a class of organosulfur compounds known as thiosulfinates. He also synthesized and reported on the chemical and biological properties of a series of thiosulfinates related to allicin.
Diallyl trisulfide (DATS), also known as Allitridin, is an organosulfur compound with the formula S(SCH2CH=CH2)2. It is one of several compounds produced by hydrolysis of allicin, including diallyl disulfide and diallyl tetrasulfide; DATS is one of the most potent.
In chemistry, a selenosulfide refers to distinct classes of inorganic and organic compounds containing sulfur and selenium. The organic derivatives contain Se-S bonds, whereas the inorganic derivatives are more variable.