Cannabigerol

Last updated
Cannabigerol
Cannabigerol-skeletal.svg
Cannabigerol molecule ball.png
Clinical data
ATC code
  • None
Legal status
Legal status
  • US:Unscheduled
Identifiers
  • 2-[(2E)-3,7-Dimethylocta-2,6-dienyl]-5-pentyl-benzene-1,3-diol
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.346.098 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C21H32O2
Molar mass 316.485 g·mol−1
3D model (JSmol)
  • Oc1cc(cc(O)c1C/C=C(\C)CC\C=C(/C)C)CCCCC
  • InChI=1S/C21H32O2/c1-5-6-7-11-18-14-20(22)19(21(23)15-18)13-12-17(4)10-8-9-16(2)3/h9,12,14-15,22-23H,5-8,10-11,13H2,1-4H3/b17-12+ Yes check.svgY
  • Key:QXACEHWTBCFNSA-SFQUDFHCSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)
Biosynthesis of cannabigerol Biosynthesis of cannabigerol.jpg
Biosynthesis of cannabigerol

Cannabigerol (CBG) is one of more than 120 identified cannabinoid compounds found in the plant genus Cannabis . [1] [2] Cannabigerol is the decarboxylated form of cannabigerolic acid, the parent molecule from which other cannabinoids are synthesized. [3] [4]

Contents

Cannabigerol is normally a minor constituent of cannabis. [3] [5] During plant growth, most of the cannabigerol is converted into other cannabinoids, primarily tetrahydrocannabinol (THC) or cannabidiol (CBD), leaving about 1% cannabigerol in the plant. [6] Some strains, however, produce larger amounts of cannabigerol and cannabigerolic acid, while having low quantities of other cannabinoids, like THC and CBD. [7]

Although cannabigerol is sold as a dietary supplement, its effects and safety for human consumption are undefined. [3]

Biosynthesis

The biosynthesis of cannabigerol begins by loading hexanoyl-CoA onto a polyketide synthase assembly protein and subsequent condensation with three molecules of malonyl-CoA. [8] This polyketide is cyclized to olivetolic acid via olivetolic acid cyclase, and then prenylated with a ten carbon isoprenoid precursor, geranyl pyrophosphate, using an aromatic prenyltransferase enzyme, geranyl-pyrophosphate—olivetolic acid geranyltransferase, to biosynthesize cannabigerolic acid, which can then be decarboxylated to yield cannabigerol. [3] [5]

Research

As of 2021, no clinical research has been conducted to test the specific effects of cannabigerol in humans. [3] Cannabigerol is under laboratory research to determine its pharmacological properties and potential effects in disease conditions, with no conclusions about therapeutic effects or safety, as of 2021. [3] [9] [10]

Cannabigerol has affinity and activity at CB1 and CB2 cannabinoid receptors in vitro . [3] [9] It appears to be unique among cannabinoid compounds by also having high affinity and activity at α2 adrenergic receptors and moderate activity at serotonin 5-HT1A receptors. [3] [11]

Safety concerns

Although general effects of its use as a dietary supplement remain undefined, the activity of cannabigerol at α2 adrenergic receptors in vitro raises concerns about its safety for human consumption, possibly having unintended effects, such as bradycardia, arterial hypotension, and dry mouth. [3]

FDA warning letters for dietary supplements

As of 2022, the US Food and Drug Administration has issued numerous warning letters to American companies for illegally marketing cannabis supplement products, [12] including one selling cannabigerol products with unproven illegal claims of efficacy against the COVID-19 virus and inflammation. [13]

Cannabigerol is not scheduled by the UN Convention on Psychotropic Substances.[ citation needed ] In the United States, cannabigerol derived from marijuana is illegal under the Controlled Substances Act, while cannabigerol derived from hemp is legal, as long as the hemp THC content is less than 0.3% of dry weight. [12] [14]

In Switzerland, it is legal to produce hemp rich in cannabigerol as a tobacco substitute, as long as its THC content remains below 1.0%. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Tetrahydrocannabinol</span> Chemical compound

Tetrahydrocannabinol (THC) is the principal psychoactive constituent of cannabis and one of at least 113 total cannabinoids identified on the plant. Although the chemical formula for THC (C21H30O2) describes multiple isomers, the term THC usually refers to the delta-9-THC isomer with chemical name (−)-trans9-tetrahydrocannabinol. THC is a terpenoid found in cannabis and, like many pharmacologically active phytochemicals, it is assumed to be involved in the plant's evolutionary adaptation against insect predation, ultraviolet light, and environmental stress. THC was first discovered and isolated by Israeli chemist Raphael Mechoulam in Israel in 1964. It was found that, when smoked, THC is absorbed into the bloodstream and travels to the brain, attaching itself to endocannabinoid receptors located in the cerebral cortex, cerebellum, and basal ganglia. These are the parts of the brain responsible for thinking, memory, pleasure, coordination and movement.

<span class="mw-page-title-main">Cannabinoid</span> Compounds found in cannabis

Cannabinoids are several structural classes of compounds found in the cannabis plant primarily and most animal organisms or as synthetic compounds. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (delta-9-THC), the primary psychoactive compound in cannabis. Cannabidiol (CBD) is also a major constituent of temperate cannabis plants and a minor constituent in tropical varieties. At least 113 distinct phytocannabinoids have been isolated from cannabis, although only four have been demonstrated to have a biogenetic origin. It was reported in 2020 that phytocannabinoids can be found in other plants such as rhododendron, licorice and liverwort, and earlier in Echinacea.

<i>Cannabis sativa</i> Plant species

Cannabis sativa is an annual herbaceous flowering plant. The species was first classified by Carl Linnaeus in 1753. The specific epithet sativa means 'cultivated'. Indigenous to Eastern Asia, the plant is now of cosmopolitan distribution due to widespread cultivation. It has been cultivated throughout recorded history and used as a source of industrial fiber, seed oil, food, and medicine. It is also used as a recreation drug and for religious and spiritual purposes.

<span class="mw-page-title-main">Cannabinol</span> Naturally-occurring cannabinoid

Cannabinol (CBN) is a mildly psychoactive cannabinoid that acts as a low affinity partial agonist at both CB1 and CB2 receptors. This activity at CB1 and CB2 receptors constitutes interaction of CBN with the endocannabinoid system (ECS).

<span class="mw-page-title-main">Cannabidiol</span> Phytocannabinoid discovered in 1940

Cannabidiol (CBD) is a phytocannabinoid discovered in 1940. It is one of 113 identified cannabinoids in cannabis plants, along with tetrahydrocannabinol (THC), and accounts for up to 40% of the plant's extract. As of 2022, clinical research on CBD included studies related to the treatment of anxiety, addiction, psychosis, movement disorders, and pain, but there is insufficient high-quality evidence that cannabidiol is effective for these conditions. CBD is also sold as a herbal dietary supplement promoted with unproven claims of particular therapeutic effects.

<span class="mw-page-title-main">Tetrahydrocannabivarin</span> Homologue of tetrahydrocannabinol

Tetrahydrocannabivarin is a homologue of tetrahydrocannabinol (THC) having a propyl (3-carbon) side chain instead of pentyl (5-carbon), making it non-psychoactive in lower doses. It has been shown to exhibit neuroprotective activity, appetite suppression, glycemic control and reduced side effects compared to THC, making it a potential treatment for management of obesity and diabetes. THCV was studied by Roger Adams as early as 1942.

<span class="mw-page-title-main">Tetrahydrocannabutol</span> Chemical compound

Δ9-Tetrahydrocannabutol is a phytocannabinoid found in cannabis that is a homologue of tetrahydrocannabinol (THC), the main active component of Cannabis. Structurally, they are only different by the pentyl side chain being replaced by a butyl side chain. THCB was studied by Roger Adams as early as 1942

<span class="mw-page-title-main">Cannabichromene</span> Chemical compound

Cannabichromene (CBC), also called cannabichrome, cannanbichromene, pentylcannabichromene or cannabinochromene, exhibits anti-inflammatory properties in vitro, which may, theoretically, contribute to cannabis analgesic effects. It is a phytocannabinoid, one of the hundreds of cannabinoids found in the Cannabis plant. It bears structural similarity to the other natural cannabinoids, including tetrahydrocannabinol (THC), tetrahydrocannabivarin (THCV), cannabidiol (CBD), and cannabinol (CBN), among others. CBC and cannabinols are present in cannabis. It is not scheduled by the Convention on Psychotropic Substances.

<span class="mw-page-title-main">Tetrahydrocannabinolic acid</span> Chemical compound

Tetrahydrocannabinolic acid is a precursor of tetrahydrocannabinol (THC), an active component of cannabis.

<span class="mw-page-title-main">Tetrahydrocannabinolic acid synthase</span> Enzyme

Tetrahydrocannabinolic acid (THCA) synthase is an enzyme responsible for catalyzing the formation of THCA from cannabigerolic acid (CBGA). THCA is the direct precursor of tetrahydrocannabinol (THC), the principal psychoactive component of cannabis, which is produced from various strains of Cannabis sativa. Therefore, THCA synthase is considered to be a key enzyme controlling cannabis psychoactivity. Polymorphisms of THCA synthase result in varying levels of THC in Cannabis plants, resulting in "drug-type" and "fiber-type" C. sativa varieties.

The entourage effect is a hypothesis that cannabis compounds other than tetrahydrocannabinol (THC) act synergistically with it to modulate the overall psychoactive effects of the plant.

<span class="mw-page-title-main">Cannabidiolic acid</span> Chemical compound

Cannabidiolic acid (CBDA), is a cannabinoid found in cannabis plants. It is most abundant in the glandular trichomes on the female seedless flowers or more accurately infructescence often colloquially referred to as buds. CBDA is the chemical precursor to cannabidiol (CBD). Through the process of decarboxylation cannabidiol is derived via a loss of a carbon and two oxygen atoms from the 1 position of the benzoic acid ring. Cannabinoids are a class of compounds that are essentially unique to the cannabis genus. Both marijuana and hemp belong to this genus.

<span class="mw-page-title-main">Tetrahydrocannabiphorol</span> Chemical compound

Tetrahydrocannabiphorol (THCP) is a potent phytocannabinoid, a CB1 and CB2 agonist which was known as a synthetic homologue of THC, but for the first time in 2019 was isolated as a natural product in trace amounts from Cannabis sativa. It is structurally similar to Δ9-THC, the main active component of cannabis, but with the pentyl side chain extended to heptyl. Since it has a longer side chain, its cannabinoid effects are "far higher than Δ9-THC itself." Tetrahydrocannabiphorol has a reported binding affinity of 1.2 nM at CB1, approximately 33 times that of Δ9-THC (40 nM at CB1).

<span class="mw-page-title-main">Cannabigerolic acid</span> Chemical compound

Cannabigerolic acid (CBGA) is the acidic form of cannabigerol (CBG). It is a dihydroxybenzoic acid and olivetolic acid in which the hydrogen at position 3 is substituted by a geranyl group. It is a biosynthetic precursor to Delta-9-tetrahydrocannabinol, which is the principal psychoactive constituent of the Cannabis plant. It is also a meroterpenoid, a member of resorcinols and a phytocannabinoid. It derives from an olivetolic acid. It is a conjugate acid of a cannabigerolate.

<span class="mw-page-title-main">Δ-8-Tetrahydrocannabinol</span> Isomer of tetrahydrocannabinol

Δ-8-tetrahydrocannabinol is a psychoactive cannabinoid found in the Cannabis plant. It is an isomer of delta-9-tetrahydrocannabinol, the compound commonly known as THC.

<span class="mw-page-title-main">Hexahydrocannabinol</span> Hydrogenated derivative of THC

Hexahydrocannabinol (HHC) is a hydrogenated derivative of tetrahydrocannabinol (THC). It is a naturally occurring phytocannabinoid that has rarely been identified as a trace component in Cannabis sativa, but can also be produced synthetically by hydrogenation of cannabis extracts. The synthesis and bioactivity of HHC was first reported in 1940 by Roger Adams using tetrahydrocannabinol prepared from cannabidiol.

<span class="mw-page-title-main">Cannabimovone</span> Chemical compound

Cannabimovone (CBM) is a phytocannabinoid first isolated from a non-psychoactive strain of Cannabis sativa in 2010, which is thought to be a rearrangement product of cannabidiol. It lacks affinity for cannabinoid receptors, but acts as an agonist at both TRPV1 and PPARγ.

<span class="mw-page-title-main">Cannabigerovarin</span> Organic chemical compound

Cannabigerovarin (CBGV), the propyl homolog of cannabigerol (CBG), is a cannabinoid present in Cannabis. There is no observation related to the psychoactive or psychotropic effects of CBGV when consumed or inhaled. The possible benefits of cannabigerovarin in human bodies are painkilling and anti-inflammatory properties to treat conditions like fibromyalgia and arthritis, the treatment and improvement of the dry-skin syndrome, cancer treatment by reducing the growth of cancer cells in patients who have leukemia. According to the pain-relieving effects of this natural cannabinoid, it can be helpful to treat patients who were undergoing drug exposure like chemotherapy or radiation therapy. In addition, cannabigerol metabolism increases and has a better absorption from the body when paired with cannabigerovarin.

Cannabinoids are compounds found in the cannabis plant or synthetic compounds that can interact with the endocannabinoid system. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (Delta-9-THC), the primary intoxicating compound in cannabis. Cannabidiol (CBD) is another major constituent of some cannabis plants. At least 113 distinct cannabinoids have been isolated from cannabis.

Chemical defenses in <i>Cannabis</i> Defense of Cannabis plant from pathogens

Cannabis (/ˈkænəbɪs/) is commonly known as marijuana or hemp and has two known strains: Cannabis sativa and Cannabis indica, both of which produce chemicals to deter herbivory. The chemical composition includes specialized terpenes and cannabinoids, mainly tetrahydrocannabinol (THC), and cannabidiol (CBD). These substances play a role in defending the plant from pathogens including insects, fungi, viruses and bacteria. THC and CBD are stored mostly in the trichomes of the plant, and can cause psychological and physical impairment in the user, via the endocannabinoid system and unique receptors. THC increases dopamine levels in the brain, which attributes to the euphoric and relaxed feelings cannabis provides. As THC is a secondary metabolite, it poses no known effects towards plant development, growth, and reproduction. However, some studies show secondary metabolites such as cannabinoids, flavonoids, and terpenes are used as defense mechanisms against biotic and abiotic environmental stressors.

References

  1. ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017). "Phytochemistry of Cannabis sativa L". Phytochemistry of Cannabis sativa L. Progress in the Chemistry of Organic Natural Products. Vol. 103. pp. 1–36. doi:10.1007/978-3-319-45541-9_1. ISBN   978-3-319-45539-6. PMID   28120229.
  2. Turner SE, Williams CM, Iversen L, Whalley BJ (2017). "Molecular Pharmacology of Phytocannabinoids". Phytocannabinoids. Progress in the Chemistry of Organic Natural Products. Vol. 103. pp. 61–101. doi:10.1007/978-3-319-45541-9_3. ISBN   978-3-319-45539-6. PMID   28120231.
  3. 1 2 3 4 5 6 7 8 9 Nachnani R, Raup-Konsavage WM, Vrana KE (2021). "The pharmacological case for cannabigerol". The Journal of Pharmacology and Experimental Therapeutics. 376 (2): 204–212. doi: 10.1124/jpet.120.000340 . ISSN   0022-3565. PMID   33168643. S2CID   226296897.
  4. "Cannabigerol; ID 5315659". PubChem, National Library of Medicine, US National Institutes of Health. 2 July 2022. Retrieved 7 July 2022.
  5. 1 2 Morales P, Reggio PH, Jagerovic N (2017). "An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol". Frontiers in Pharmacology. 8: 422. doi: 10.3389/fphar.2017.00422 . PMC   5487438 . PMID   28701957.
  6. Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, et al. (February 2016). "Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes". Journal of Natural Products. 79 (2): 324–331. doi:10.1021/acs.jnatprod.5b00949. PMID   26836472.
  7. Zagožen M, Čerenak A, Kreft S (2021-09-01). "Cannabigerol and cannabichromene in Cannabis sativa L." Acta Pharmaceutica. 71 (3): 355–364. doi:10.2478/acph-2021-0021. PMID   36654096. S2CID   231543630.
  8. Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (July 2012). "Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides". Proceedings of the National Academy of Sciences of the United States of America. 109 (31): 12811–12816. Bibcode:2012PNAS..10912811G. doi: 10.1073/pnas.1200330109 . PMC   3411943 . PMID   22802619.
  9. 1 2 Morales P, Hurst DP, Reggio PH (2017). "Molecular Targets of the Phytocannabinoids: A Complex Picture". Phytocannabinoids. Progress in the Chemistry of Organic Natural Products. Vol. 103. pp. 103–131. doi:10.1007/978-3-319-45541-9_4. ISBN   978-3-319-45539-6. PMC   5345356 . PMID   28120232.
  10. Couch DG, Maudslay H, Doleman B, Lund JN, O'Sullivan SE (March 2018). "The Use of Cannabinoids in Colitis: A Systematic Review and Meta-Analysis". Inflammatory Bowel Diseases. 24 (4): 680–697. doi: 10.1093/ibd/izy014 . PMID   29562280.
  11. Cascio MG, Gauson LA, Stevenson LA, Ross RA, Pertwee RG (January 2010). "Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist". British Journal of Pharmacology. 159 (1): 129–141. doi:10.1111/j.1476-5381.2009.00515.x. PMC   2823359 . PMID   20002104.
  12. 1 2 "FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD)". US Food and Drug Administration. 21 January 2021. Retrieved 7 July 2022.
  13. Ashley D (28 March 2022). "Warning Letter to Greenway Herbal Products LLC; Ref. 627042". Office of Compliance, Center for Drug Evaluation and Research, Food and Drug Administration. Retrieved 7 July 2022.
  14. "USC > Title 21 > Chapter 13 > Subchapter I > Part A > § 802. Definitions: (16)" (PDF). Government Publishing Office - US Code. 2016.
  15. BAG, Bundesamt für Gesundheit. "Häufig gestellte Fragen (FAQ) zu Tabakersatzprodukten mit THC-armem Hanf mit CBD". www.bag.admin.ch (in German). Retrieved 2022-07-06.