LSD-Pip

Last updated
LSD-Pip
LSD-Pip.svg
Identifiers
  • (8β)-6-methyl-8-(piperidin-1-ylcarbonyl)-9,10-didehydroergoline
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H25N3O
Molar mass 335.451 g·mol−1
3D model (JSmol)
  • CN1C[C@@H](C=C2[C@H]1Cc3c[nH]c4c3c2ccc4)C(=O)N5CCCCC5
  • InChI=1S/C21H25N3O/c1-23-13-15(21(25)24-8-3-2-4-9-24)10-17-16-6-5-7-18-20(16)14(12-22-18)11-19(17)23/h5-7,10,12,15,19,22H,2-4,8-9,11,13H2,1H3/t15-,19-/m1/s1
  • Key:URDULHYODQAQTM-DNVCBOLYSA-N
   (verify)

LSD-Pip is a compound from the ergoline family, related to LSD but with the N,N-diethyl substitution replaced by a piperidine group. It is more potent than the corresponding pyrrolidine and morpholine analogues (LPD-824 and LSM-775 respectively), but is still several times less potent than LSD as a 5-HT2A agonist. [1] Early studies suggested this compound to be inactive as a psychedelic in humans, [2] though this does not seem to have been confirmed by any more recent work.

See also

Related Research Articles

<span class="mw-page-title-main">Lysergic acid diethylamide</span> Hallucinogenic drug

Lysergic acid diethylamide (LSD), also known colloquially as acid, is a potent psychedelic drug. Effects typically include intensified thoughts, emotions, and sensory perception. At sufficiently high dosages LSD manifests primarily mental, visual, as well as auditory, hallucinations. Dilated pupils, increased blood pressure, and increased body temperature are typical. Effects typically begin within half an hour and can last for up to 20 hours. LSD is also capable of causing mystical experiences and ego dissolution. It is used mainly as a recreational drug or for spiritual reasons. LSD is both the prototypical psychedelic and one of the "classical" psychedelics, being the psychedelics with the greatest scientific and cultural significance. LSD is typically either swallowed or held under the tongue. It is most often sold on blotter paper and less commonly as tablets, in a watery solution or in gelatin squares called panes.

<span class="mw-page-title-main">Ergine</span> Chemical compound

Ergine, also known as d-lysergic acid amide (LSA) and d-lysergamide, is an ergoline alkaloid that occurs in various species of vines of the Convolvulaceae and some species of fungi. The psychedelic properties in the seeds of ololiuhqui, Hawaiian baby woodrose and morning glories have been linked to ergine and/or isoergine, its epimer, as it is an alkaloid present in the seeds.

<span class="mw-page-title-main">Lysergamides</span> Class of chemical compounds

Amides of lysergic acid are collectively known as lysergamides, and include a number of compounds with potent agonist and/or antagonist activity at various serotonin and dopamine receptors.

<span class="mw-page-title-main">Lysergic acid hydroxyethylamide</span> Chemical compound

D-Lysergic acid α-hydroxyethylamide, also known as D-lysergic acid methyl carbinolamide, is an alkaloid of the ergoline family, believed to be present in small amounts in various species in the Convolvulaceae, as well as some species of fungi.

<span class="mw-page-title-main">AL-LAD</span> Chemical compound (psychedelic drug)

AL-LAD, also known as 6-allyl-6-nor-LSD, is a psychedelic drug and an analog of lysergic acid diethylamide (LSD). It is described by Alexander Shulgin in the book TiHKAL. It is synthesized starting from nor-LSD as a precursor, using allyl bromide as a reactant.

<span class="mw-page-title-main">ETH-LAD</span> Chemical compound

ETH-LAD, 6-ethyl-6-nor-lysergic acid diethylamide is an analogue of LSD. Its human psychopharmacology was first described by Alexander Shulgin in the book TiHKAL. ETH-LAD is a psychedelic drug similar to LSD, and is slightly more potent than LSD itself, with an active dose reported at between 20 and 150 micrograms. ETH-LAD has subtly different effects to LSD, described as less demanding.

<span class="mw-page-title-main">PRO-LAD</span> Chemical compound

PRO-LAD is an analogue of LSD. It is described by Alexander Shulgin in the book TiHKAL. PRO-LAD is a psychedelic drug similar to LSD, and is around as potent as LSD itself with an active dose reported at between 100 and 200 micrograms.

<span class="mw-page-title-main">BU-LAD</span> Chemical compound

BU-LAD, also known as 6-butyl-6-nor-lysergic acid diethylamide, is an analogue of LSD first made by Alexander Shulgin and reported in the book TiHKAL. BU-LAD is a psychedelic drug similar to LSD, but is significantly less potent than LSD, with a dose of 500 micrograms producing only mild effects.

<span class="mw-page-title-main">LSM-775</span> Chemical compound

N-Morpholinyllysergamide (LSM-775) is a derivative of ergine. It is less potent than LSD but is reported to have some LSD-like effects at doses ranging from 75 to 700 micrograms and a shorter duration. There are fewer signs of cardiovascular stimulation and peripheral toxicity with LSM-775 compared to LSD.

<span class="mw-page-title-main">Dimethyllysergamide</span>

N,N-Dimethyllysergamide or N,N-dimethyl-D-lysergamide (DAM-57) is a derivative of ergine. There has been a single report of observing N,N-dimethyl-D-lysergamide in the illicit drug market. This compound did induce autonomic disturbances at oral levels of some ten times the dosage required for LSD, presumably in the high hundreds of micrograms. There is some disagreement as to whether there were psychic changes observed.

<span class="mw-page-title-main">Albert Hofmann</span> Swiss chemist (1906–2008)

Albert Hofmann was a Swiss chemist known for being the first to synthesize, ingest, and learn of the psychedelic effects of lysergic acid diethylamide (LSD). Hofmann's team also isolated, named and synthesized the principal psychedelic mushroom compounds psilocybin and psilocin. He authored more than 100 scientific articles and numerous books, including LSD: Mein Sorgenkind. In 2007, he shared first place with Tim Berners-Lee on a list of the 100 greatest living geniuses published by The Daily Telegraph newspaper.

<span class="mw-page-title-main">Lysergic acid 2,4-dimethylazetidide</span> Chemical compound

Lysergic acid 2,4-dimethylazetidide is an analog of LSD developed by the team led by David E. Nichols at Purdue University. It was developed as a rigid analog of LSD with the diethylamide group constrained into an azetidine ring in order to map the binding site at the 5-HT2A receptor. There are three possible stereoisomers around the azetidine ring, with the (S,S)-(+) isomer being the most active, slightly more potent than LSD itself in drug discrimination tests using trained rats.

<span class="mw-page-title-main">Methylisopropyllysergamide</span> Chemical compound

Methylisopropyllysergamide is an analogue of LSD that was originally discovered by Albert Hofmann at Sandoz during the original structure-activity research into LSD. It has subsequently been investigated in more detail by the team led by David E. Nichols at Purdue University. Methylisopropyllysergamide is a structural isomer of LSD, with the alkyl groups on the amide nitrogen having been subjected to a methylene shuffle. MIPLA and its ethylisopropyl homologue are the only simple N,N-dialkyl lysergamides that approach the potency of LSD itself, being around 1/3-1/2 the potency of LSD, while all other dialkyl analogues tested are only around 1/10 as potent as LSD, although some N-monoalkyl lysergamides such as the sec-butyl and t-butyl derivatives were also found to show an activity profile and potency comparable to LSD, and the mono-isopropyl derivative is only slightly weaker than MIPLA. Apart from its lower potency, the hallucinogenic effects of methylisopropyllysergamide are similar to those of LSD itself, and the main use for this drug has been in studies of the binding site at the 5-HT2A receptor through which LSD exerts most of its pharmacological effects.

<span class="mw-page-title-main">Lysergic acid 2-butyl amide</span> Chemical compound

Lysergic acid 2-butyl amide (2-Butyllysergamide, LSB) is an analogue of LSD originally developed by Richard Pioch at Eli Lilly in the 1950s, but mostly publicised through research conducted by the team led by David E. Nichols at Purdue University. It is a structural isomer of LSD, with the two ethyl groups on the amide nitrogen having been replaced by a single sec-butyl group, joined at the 2-position. It is one of the few lysergamide derivatives to exceed the potency of LSD in animal drug discrimination assays, with the (R) isomer having an ED50 of 33nmol/kg for producing drug-appropriate responding, vs 48nmol/kg for LSD itself. The corresponding (R)-2-pentyl analogue has higher binding affinity for the 5-HT1A and 5-HT2A receptors, but is less potent in producing drug-appropriate responding, suggesting that the butyl compound has a higher efficacy at the receptor target. The drug discrimination assay for LSD in rats involves both 5-HT1A and 5-HT2A mediated components, and while lysergic acid 2-butyl amide is more potent than LSD as a 5-HT1A agonist, it is slightly less potent as a 5-HT2A agonist, and so would probably be slightly less potent than LSD as a hallucinogen in humans. The main use for this drug has been in studies of the binding site at the 5-HT2A receptor through which LSD exerts most of its pharmacological effects, with the stereoselective activity of these unsymmetric monoalkyl lysergamides foreshadowing the subsequent development of compounds such as lysergic acid 2,4-dimethylazetidide (LSZ).

<span class="mw-page-title-main">Ergocristine</span> Chemical compound

Ergocristine is an ergopeptine and one of the ergot alkaloids. As of February 24, 2010 ergocristine has been federally scheduled. Because of the existing Controlled Substance Act regulatory controls on the LSD precursors lysergic acid, lysergic acid amide, ergotamine, and ergonovine, clandestine laboratory operators have sought uncontrolled sources of precursor material for the production of LSD. This has led to the illicit utilization of the precursor chemical ergocristine as a direct substitute for ergotamine and ergonovine for the illicit production of LSD. In fact, the largest clandestine LSD laboratory ever, William Leonard Pickard and Clyde Apperson, that was seized by the Drug Enforcement Administration (DEA) utilized ergocristine as the LSD precursor according to court documents.

<span class="mw-page-title-main">Lysergic acid 3-pentyl amide</span> Chemical compound

Lysergic acid 3-pentyl amide is an analogue of LSD originally researched by David E. Nichols and colleagues at Purdue University. It has similar binding affinity to LSD itself as both a 5-HT1A and 5-HT2A agonist, and produces similar behavioral and physiological responses in animals with only slightly lower potency than LSD. Other isomers of this compound have also been explored, with the 1-pentylamide being around 75% the potency of LSD, while the (R)-2-pentylamide shows similar 5-HT2A binding affinity to LSD in vitro but has only around half the potency of LSD in producing drug-appropriate responding in mice, and the (S)-2-pentylamide is inactive.

<span class="mw-page-title-main">2-Bromo-LSD</span> Chemical compound

2-Bromo-LSD, also known as BOL-148, is a derivative of lysergic acid invented by Albert Hofmann, as part of the original research from which the closely related compound LSD was also derived. 2-Bromo-LSD was found to be inactive as a psychedelic and so was comparatively little researched for many years, although its similar behavior in the body made it useful for radiolabelling studies. It was found to bind to many of the same receptors as LSD, but acting as a neutral antagonist rather than an agonist. However its generally similar behavior to LSD in some respects has shown to be very useful in one specific area, the treatment of cluster headaches. These debilitating attacks have been known for some time to be amenable to treatment with certain hallucinogenic drugs such as LSD and psilocybin, but because of the illegal status of these drugs and the kind of mental changes they induce, research into their medical use has been slow and therapeutic application limited to very specific circumstances under strict supervision. It had been thought that this specific therapeutic action against cluster headaches was limited to hallucinogenic drugs of this type, and would always present a major barrier to their clinical use. However a serendipitous discovery found that 2-bromo-LSD is also able to produce this therapeutic effect, despite lacking the other effects of LSD. This has led to a resurgence of interest and research into 2-bromo-LSD and its possible medical uses. Some isolated incidents of hallucinogenic responses have been reported, but as with other non-hallucinogenic LSD analogues such as lisuride, this appears to be a rare side effect occurring only in individuals with an as yet unexplained susceptibility to this reaction. 2-Bromo-LSD reportedly attenuates the effects of LSD in humans.

Psychedelic microdosing is the practice of using sub-threshold doses (microdoses) of serotonergic psychedelic drugs in an attempt to improve creativity, boost physical energy level, promote emotional balance, increase performance on problems-solving tasks and to treat anxiety, depression and addiction. The practice of microdosing has become more widespread in the 21st century with more people claiming long-term benefits from the practice.

<span class="mw-page-title-main">ETFELA</span>

ETFELA is an analog of lysergic acid diethylamide (LSD) first synthesised by Jason C. Parrish as part of the research team led by David E. Nichols. In studies in vitro, it was found to be slightly more potent than LSD itself.

<span class="mw-page-title-main">LAMPA</span> Chemical compound

LAMPA is a structural analogue of lysergic acid diethylamide (LSD) that has been studied as a potential treatment for alcoholism. In animal studies, LAMPA was found to be nearly equipotent to ECPLA and MIPLA for inducing a head-twitch response. LAMPA appears to be significantly less potent than LSD in humans, producing little to no noticeable effects at doses of 100 µg.

References

  1. Braden MR (2007). Towards a biophysical understanding of hallucinogen action (Ph.D. thesis). Purdue University. ProQuest   304838368.
  2. Cerletti A, Doepfner W (January 1958). "Comparative study on the serotonin antagonism of amide derivatives of lysergic acid and of ergot alkaloids". The Journal of Pharmacology and Experimental Therapeutics. 122 (1): 124–36. PMID   13502837.