David E. Nichols

Last updated
David Earl Nichols
David Earl Nichols (academic).jpg
Born (1944-12-23) December 23, 1944 (age 79)
CitizenshipUSA
Known forExtensive research into 5-HT2A receptor and dopamine receptors, SAR of hallucinogens, research into MDMA neurotoxicity and MDMA analogues
Scientific career
Fields Medicinal Chemistry, Pharmacology
Institutions Purdue University, Indiana University School of Medicine

David Earl Nichols (born December 23, 1944, Covington, Kentucky) is an American pharmacologist and medicinal chemist. [1] Previously the Robert C. and Charlotte P. Anderson Distinguished Chair in Pharmacology at Purdue University, Nichols has worked in the field of psychoactive drugs since 1969. While still a graduate student, he patented the method that is used to make the optical isomers of hallucinogenic amphetamines. His contributions include the synthesis and reporting of escaline, LSZ, 6-APB, 2C-I-NBOMe and other NBOMe variants (NBOMe-2C-B, NBOMe-2C-C, NBOMe-2C-D), and several others, as well as the coining of the term "entactogen".

Contents

He is the founding president of the Heffter Research Institute, named after German chemist and pharmacologist Arthur Heffter, who first discovered that mescaline was the active component in the peyote cactus. In 2004 he was named the Irwin H. Page Lecturer by the former International Serotonin Club (now the International Society for Serotonin Research), [2] and delivered an address in Portugal titled, "35 years studying psychedelics: what a long strange trip it's been." Among pharmacologists, he is considered to be one of the world's top experts on psychedelics. Nichols's other professional activities include teaching medicinal chemistry and molecular pharmacology at Purdue University in West Lafayette, IN, and teaching medical students at the Indiana University School of Medicine. He officially retired in 2012 but has continued to work for the simple reason that nobody is in the position to continue his work,[ citation needed ] and he is considering writing an autobiography. He is currently an adjunct professor at the UNC Eshelman School of Pharmacy, Chapel Hill, NC. [3]

Education

Research areas

Nichols is still carrying out academic research on the chemistry of psychedelics. He has published approximately 250 scientific reports and book chapters, all describing the relationship between the structure of a molecule and its biological effects (often referred to as a Structure-activity relationship, or SAR). He has done extensive work using the rat model assay of drug discrimination in characterizing hallucinogenic drugs. [5] Although his research mostly uses rats, a number of compounds included in Shulgin's PIHKAL were actually first synthesized in Nichols's lab. His lab also first developed [125 I]-(R)-DOI as a radioligand. Nichols is one of the few people who has published legitimate research on the chemistry and pharmacology of LSD in the last 20 years, and first reported that several LSD analogues, including ETH-LAD, PRO-LAD, and AL-LAD, were more potent than LSD itself. Their human effects are described in TiHKAL. He also improved the synthesis of psilocybin so that it could be accessible for several recent clinical studies.[ when? ]

Other notable research that he helped carry out includes extensive studies of the structure-activity relationships and mechanisms of action of MDA and MDMA, during which he helped to discover many novel analogues including such compounds as 5-methyl-MDA, 4-MTA and MDAI. Nichols has said that he believes gray-market chemists used information from papers he published on 4-methylthioamphetamine (MTA) in the 1990s to synthesize the drug, which they sold in tablets nicknamed "flatliners" as a substitute for MDMA (Ecstasy)." [6]

More recently, Nichols has become one of the world leaders in research on dopamine, and his team has developed several notable dopamine receptor ligands, including the selective D1 full agonist compounds dihydrexidine and dinapsoline which have been researched for the treatment of Parkinson's disease, as well as a number of other subtype-selective dopamine agonists derived from dinoxyline. He co-founded DarPharma, Inc. to commercialize his dopamine compounds; several of his team's compounds are now being studied in clinical trials for the treatment of Parkinson's disease and the cognitive and memory deficits of schizophrenia.

Impact on the designer drug market

Designer drug producers who scan scientific literature for information on compounds with potential grey market value have described Nichols' publications as an "especially valuable" road map to making new designer drugs. [7] Several deaths have been attributed to compounds that have been discovered in Nichols' lab, which he finds quite upsetting, "I was stunned by this revelation, and it left me with a hollow and depressed feeling for some time." [8]

See also

Related Research Articles

<span class="mw-page-title-main">Alexander Shulgin</span> American medicinal chemist (1925–2014)

Alexander Theodore "Sasha" Shulgin was an American medicinal chemist, biochemist, organic chemist, pharmacologist, psychopharmacologist, and author. He is credited with introducing MDMA, commonly known as "ecstasy", via academic journals and papers to psychologists in the late 1970s for psychopharmaceutical use and for the discovery, synthesis and personal bioassay of over 230 psychoactive compounds for their psychedelic and entactogenic potential.

<span class="mw-page-title-main">2C-B</span> Psychoactive drug

2C-B (4-bromo-2,5-dimethoxyphenethylamine), also known as Nexus, is a synthetic psychedelic drug of the 2C family, mainly used as a recreational drug. The substance was first synthesized by Alexander Shulgin in 1974, and gained an initial reputation for potential psychotherapeutic use, but its use has been limited to mainly recreational use. To date, there is limited scientific information regarding the drug's pharmacokinetics and pharmacological effects in humans. The existing studies primarily classify 2C-B as a stimulant and hallucinogen, and less commonly an entactogen and empathogen.

<span class="mw-page-title-main">2C-E</span> Chemical compound

2C-E is a psychedelic phenethylamine of the 2C family. It was first synthesized by Alexander Shulgin and documented in his book PiHKAL. Like the other substances in its family, it produces sensory and cognitive effects in its physical reactions with living organisms.

<span class="mw-page-title-main">3,4-Methylenedioxyamphetamine</span> Empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family

3,4-Methylenedioxyamphetamine is an empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family that is encountered mainly as a recreational drug. In its pharmacology, MDA is a serotonin–norepinephrine–dopamine releasing agent (SNDRA). In most countries, the drug is a controlled substance and its possession and sale are illegal.

<span class="mw-page-title-main">MBDB</span> Chemical compound

1,3-Benzodioxolyl-N-methylbutanamine (N-methyl-1,3-benzodioxolylbutanamine, MBDB, 3,4-methylenedioxy-N-methyl-α-ethylphenylethylamine) is an entactogen of the phenethylamine chemical class. It is known by the street names Eden and Methyl-J. MBDB is a ring substituted amphetamine and an analogue of MDMA. Like MDMA, it has a methylene dioxy substitution at the 3 and 4 position on the aromatic ring; this is perhaps the most distinctive feature that structurally define analogues of MDMA, in addition to their unique effects, and as a class they are often referred to as "entactogens" to differentiate between typical psychostimulant amphetamines that (as a general rule) are not ring substituted. MBDB differs from MDMA by having an ethyl group instead of a methyl group attached to the alpha carbon; all other parts are identical. Modification at the alpha carbon is uncommon for substituted amphetamines. It has IC50 values of 784 nM against 5-HT, 7825 nM against dopamine, and 1233 nM against norepinephrine. Its metabolism has been described in scientific literature.

<span class="mw-page-title-main">2C-TFM</span> Psychedelic phenethylamine drug

2C-TFM is a psychedelic phenethylamine of the 2C family. It was first synthesized in the laboratory of David E. Nichols. It has also been called 2C-CF3, a name derived from the Para-trifluoromethyl group it contains.

<span class="mw-page-title-main">2C-B-FLY</span> Psychedelic designer drug

2C-BFLY is a psychedelic phenethylamine and designer drug of the 2C family. It was first synthesized in 1996 by Aaron Monte, Professor of Chemistry at UW-La Crosse.

<span class="mw-page-title-main">ETH-LAD</span> Chemical compound

ETH-LAD, 6-ethyl-6-nor-lysergic acid diethylamide is an analogue of LSD. Its human psychopharmacology was first described by Alexander Shulgin in the book TiHKAL. ETH-LAD is a psychedelic drug similar to LSD, and is slightly more potent than LSD itself, with an active dose reported at between 20 and 150 micrograms. ETH-LAD has subtly different effects to LSD, described as less demanding. The true tryptamine counterpart of ETH-LAD is MET, a simplified version of this structure.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

<span class="mw-page-title-main">MMDA-2</span> Psychedelic drug

MMDA-2 (2-methoxy-4,5-methylenedioxyamphetamine) is a psychedelic drug of the amphetamine class. It is closely related to MMDA and MDA.

<span class="mw-page-title-main">25I-NBOMe</span> Synthetic hallucinogen

25I-NBOMe, also known as Smiles, or N-Bomb, is a novel synthetic psychoactive substance with strong hallucinogenic properties, synthesized in 2003 for research purposes. Since 2010, it has circulated in the recreational drug scene, often misrepresented as LSD.

<span class="mw-page-title-main">5-APDB</span> Chemical compound

5-(2-Aminopropyl)-2,3-dihydrobenzofuran is a putative entactogen drug of the phenethylamine and amphetamine classes. It is an analogue of MDA where the heterocyclic 3-position oxygen from the 3,4-methylenedioxy ring has been replaced by a methylene bridge. 6-APDB is an analogue of 5-APDB where the 4-position oxygen has been replaced by a methylene bridge instead. 5-APDB was developed by a team led by David E. Nichols at Purdue University as part of their research into non-neurotoxic analogues of MDMA.

<span class="mw-page-title-main">3-Methoxy-4-methylamphetamine</span> Entactogen and psychedelic drug of the phenethylamine and amphetamine classes

3-Methoxy-4-methylamphetamine (MMA) is an entactogen and psychedelic drug of the phenethylamine and amphetamine classes. It was first synthesized in 1970 and was encountered as a street drug in Italy in the same decade. MMA was largely forgotten until being reassayed by David E. Nichols as a non-neurotoxic MDMA analogue in 1991, and has subsequently been sold as a designer drug on the internet since the late 2000s (decade).

<span class="mw-page-title-main">25B-NBOMe</span> Chemical compound

25B-NBOMe is a derivative of the phenethylamine psychedelic 2C-B, discovered in 2004 by Ralf Heim at the Free University of Berlin. It acts as a potent full agonist for the 5HT2A receptor. Duration of effects lasts about 3–10 hours, although the parent compound is rapidly cleared from the blood when used in the radiolabeled form in tracer doses. Recently, Custodio et al. (2019) evaluated the potential involvement of dysregulated dopaminergic system, neuroadaptation, and brain wave changes which may contribute to the rewarding and reinforcing properties of 25B-NBOMe in rodents.

<span class="mw-page-title-main">6-Methyl-MDA</span> Chemical compound

6-Methyl-3,4-methylenedioxyamphetamine (6-Methyl-MDA) is an entactogen and psychedelic drug of the amphetamine class. It was first synthesized in the late 1990s by a team including David E. Nichols at Purdue University while investigating derivatives of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxy-N-methylamphetamine (MDMA).

<span class="mw-page-title-main">2CB-Ind</span> Chemical compound

2CB-Ind is a conformationally-restricted derivative of the phenethylamine hallucinogen 2C-B, discovered in 1974 by Alexander Shulgin. It acts as a moderately potent and selective agonist for the 5-HT2A and 5-HT2C receptors, but unlike the corresponding benzocyclobutene derivative TCB-2 which is considerably more potent than the parent compound 2C-B, 2CB-Ind is several times weaker, with racemic 2CB-Ind having a Ki of 47nM at the human 5-HT2A receptor, only slightly more potent than the mescaline analogue (R)-jimscaline.

<span class="mw-page-title-main">25D-NBOMe</span> Chemical compound

25D-NBOMe is a derivative of the phenethylamine derived hallucinogen 2C-D. It acts in a similar manner to related compounds such as 25I-NBOMe, which is a potent agonist at the 5-HT2A receptor. 25D-NBOMe has been sold as a street drug since 2010 and produces similar effects in humans to related compounds such as 25I-NBOMe and 25C-NBOMe. It was banned as a Temporary Class Drug in the UK on 10 June 2013 after concerns about its recreational use.

<span class="mw-page-title-main">25N-NBOMe</span> Chemical compound

25N-NBOMe is a derivative of the hallucinogen 2C-N. The pharmacological properties of 25N-NBOMe have not been described in the scientific literature, but it is believed to act in a similar manner to related compounds such as 25I-NBOMe and 25C-NBOMe, which are potent agonists at the 5HT2A receptor. 25N-NBOMe has been sold as a street drug and has only been described in the literature in terms of identification by forensic analysis.

<span class="mw-page-title-main">Substituted benzofuran</span> Class of chemical compounds

The substituted benzofurans are a class of chemical compounds based on the heterocyclyc and polycyclic compound benzofuran. Many medicines use the benzofuran core as a scaffold, but most commonly the term is used to refer to the simpler compounds in this class which include numerous psychoactive drugs, including stimulants, psychedelics and empathogens. In general, these compounds have a benzofuran core to which a 2-aminoethyl group is attached, and combined with a range of other substituents. Some psychoactive derivatives from this family have been sold under the name Benzofury.

<span class="mw-page-title-main">25-NB</span> Family of serotonergic psychedelics

The 25-NB (25x-NBx) series, sometimes alternatively referred to as the NBOMe compounds, is a family of serotonergic psychedelics. They are substituted phenethylamines and were derived from the 2C family. They act as selective agonists of the serotonin 5-HT2A receptor. The 25-NB family is unique relative to other classes of psychedelics in that they are, generally speaking, extremely potent and relatively selective for the 5-HT2A receptor. Use of NBOMe series drugs has caused many deaths and hospitalisations since the drugs popularisation in the 2010s. This is primarily due to their high potency, unpredictable pharmacokinetics, and sellers passing off the compounds in the series as LSD.

References

  1. "The Heffter Review of Psychedelic Research, Volume 1, 1998 - 5. The Medicinal Chemistry of Phenethylamine Psychedelics by David E. Nichols, Ph.D." (PDF). Archived from the original (PDF) on 2008-07-04.
  2. "Home". serotoninclub.org.
  3. "David Nichols". Archived 2022-09-06 at the Wayback Machine
  4. "David E. Nichols, PhD, Robert C. and Charlotte P. Anderson Distinguished Chair in Pharmacology". Archived from the original on 2010-04-21. Retrieved 2010-04-09.
  5. Renaud Jardri; Arnaud Cachia; Pierre Thomas; Delphine Pins (2012). The Neuroscience of Hallucinations. Springer. pp. 262–263. ISBN   9781461441205.
  6. Sullum, Jacob (2011-01-06) If Only There Were Some Way to Discourage the Marketing of Dangerous Substitutes for Banned Drugs..., Reason
  7. Whalen, Jeanne (Oct 30, 2010). "In Quest for 'Legal High,' Chemists Outfox Law". The Wall Street Journal . Retrieved 10 September 2013.
  8. Nichols, David (5 January 2011). "Legal highs: the dark side of medicinal chemistry". Nature . 469 (7): 7. Bibcode:2011Natur.469....7N. doi: 10.1038/469007a . PMID   21209630.

Further reading