Substituted benzofuran

Last updated

General chemical structure of substituted benzofurans Benzofuran 2D numbered.svg
General chemical structure of substituted benzofurans

The substituted benzofurans are a class of chemical compounds based on the heterocyclic and polycyclic compound benzofuran. Many medicines use the benzofuran core as a scaffold, [1] [2] [3] but most commonly the term is used to refer to the simpler compounds in this class which include numerous psychoactive drugs, including stimulants, psychedelics and empathogens. In general, these compounds have a benzofuran core to which a 2-aminoethyl group is attached (at any position), and combined with a range of other substituents. [4] [5] [6] [7] Some psychoactive derivatives from this family have been sold under the name Benzofury . [8]

Contents

Use and effects

Benzofurans like 5-APB and 6-APB are said to have relatively minor psychedelic effects. [12] [13]

Interactions

Pharmacology

Pharmacodynamics

Activities of benzofurans and their MDxx relatives
Compound Monoamine release (EC50 Tooltip half-maximal effective concentration, nM)Ref
5-HT Tooltip Serotonin releasing agent NE Tooltip Norepinephrine releasing agent DA Tooltip Dopamine releasing agent
5-APB 192131 [14]
6-APB 361410 [14]
5-MAPB 64–902441–459 [14] [15]
  (S)-5-MAPB67ND258 [15]
  (R)-5-MAPB184ND1,951 [15]
6-MAPB 331420 [14]
5-MABB (5-MBPB)NDNDND [16] [17]
  (S)-5-MABB31158210 [16] [17]
  (R)-5-MABB49850IA [16] [17]
6-MABB (6-MBPB)NDNDND [16] [17]
  (R)-6-MABB172227IA [16] [17]
  (S)-6-MABB547741 [16] [17]
BK-5-MAPB NDNDNDND
BK-6-MAPB NDNDNDND
MDA 160–16247–108106–190 [18] [19] [14]
MDMA 50–8554–11051–278 [20] [21] [22] [18] [14]
MBDB 5403,300>100,000 [23]
Methylone 234–708140–270117–220 [21] [24] [25] [26] [27]
Notes: The smaller the value, the more strongly the compound produces the effect. The assays were done in rat brain synaptosomes and human potencies may be different. See also Monoamine releasing agent § Activity profiles for a larger table with more compounds.

Benzofurans like 5-APB and 6-APB act as serotonin–norepinephrine–dopamine releasing agents and as serotonin 5-HT2 receptor agonists. [9] [11] [28] In addition, some benzofurans, including 5-MAPB, 6-MAPB, BK-5-MAPB, and BK-6-MAPB, have unexpectedly been found to be potent serotonin 5-HT1B receptor agonists. [29] Along with serotonin release and other actions, this property may be involved may be involved in their entactogenic effects. [29] Conversely, MDMA is much less potent as an agonist of the serotonin 5-HT1B receptor. [29]

Chemistry

History

The 2,3-dihydrobenzofurans 5-APDB and 6-APDB were described by David E. Nichols and colleagues at Purdue University as MDMA analogues in 1993. [14] [8] [13] [28] [30] [31] Subsequently, the benzofurans 5-APB and 6-APB emerged as novel designer drugs in 2010. [13] [8] [28] Prior to this, they had been patented by Eli Lilly and Company as serotonin 5-HT2C receptor agonists for potential treatment of eating disorders and seizures in 2000 and 2006. [14] [8] [13] The pharmacology of various benzofurans and 2,3-dihydrobenzofurans was further clarified in the mid-2010s and thereafter. [32] [33] [28] [14]

Society and culture

Substituted benzofurans saw widespread use as recreational drugs by being sold as research chemicals making them exempt from drug legislation. Many of the more common compounds were banned in the UK in June 2013 as temporary class drugs, while others have been made permanently illegal in various jurisdictions. [34] [35] [36]

List of substituted benzofurans

The derivatives may be produced by substitutions at six locations of the benzofuran molecule, as well as saturation of the 2,3- double bond.

The following table displays notable derivatives that have been reported: [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47]

See also

References

  1. Dawood KM (September 2013). "Benzofuran derivatives: a patent review". Expert Opinion on Therapeutic Patents. 23 (9): 1133–56. doi:10.1517/13543776.2013.801455. PMID   23683135. S2CID   24425145.
  2. Nevagi RJ, Dighe SN, Dighe SN (June 2015). "Biological and medicinal significance of benzofuran". European Journal of Medicinal Chemistry. 97: 561–81. doi:10.1016/j.ejmech.2014.10.085. PMID   26015069.
  3. Khanam H (June 2015). "Bioactive Benzofuran derivatives: A review". European Journal of Medicinal Chemistry. 97: 483–504. doi:10.1016/j.ejmech.2014.11.039. PMID   25482554.
  4. Nugteren-van Lonkhuyzen JJ, van Riel AJ, Brunt TM, Hondebrink L (December 2015). "Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans". Drug and Alcohol Dependence. 157: 18–27. doi:10.1016/j.drugalcdep.2015.10.011. PMID   26530501.
  5. Liu C, Jia W, Qian Z, Li T, Hua Z (February 2017). "Identification of five substituted phenethylamine derivatives 5-MAPDB, 5-AEDB, MDMA methylene homolog, 6-Br-MDMA, and 5-APB-NBOMe". Drug Testing and Analysis. 9 (2): 199–207. doi:10.1002/dta.1955. PMID   26856255.
  6. Barcelo B, Gomila I (2017). "Pharmacology and Literature Review Based on Related Death and Non-Fatal Case Reports of the Benzofurans and Benzodifurans Designer Drugs". Current Pharmaceutical Design. 23 (36): 5523–5529. doi:10.2174/1381612823666170714155140. PMID   28714411.
  7. Halberstadt AL, Chatha M, Stratford A, Grill M, Brandt SD (January 2019). "Comparison of the behavioral responses induced by phenylalkylamine hallucinogens and their tetrahydrobenzodifuran ("FLY") and benzodifuran ("DragonFLY") analogs". Neuropharmacology. 144: 368–376. doi:10.1016/j.neuropharm.2018.10.037. PMC   6863604 . PMID   30385253.
  8. 1 2 3 4 5 Roque Bravo R, Carmo H, Carvalho F, Bastos ML, Dias da Silva D (August 2019). "Benzo fury: A new trend in the drug misuse scene". J Appl Toxicol. 39 (8): 1083–1095. doi:10.1002/jat.3774. PMID   30723925.
  9. 1 2 Oeri HE (May 2021). "Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy". J Psychopharmacol. 35 (5): 512–536. doi:10.1177/0269881120920420. PMC   8155739 . PMID   32909493.
  10. Luethi D, Liechti ME (October 2018). "Monoamine Transporter and Receptor Interaction Profiles in Vitro Predict Reported Human Doses of Novel Psychoactive Stimulants and Psychedelics". Int J Neuropsychopharmacol. 21 (10): 926–931. doi:10.1093/ijnp/pyy047. PMC   6165951 . PMID   29850881.
  11. 1 2 Luethi D, Liechti ME (April 2020). "Designer drugs: mechanism of action and adverse effects". Arch Toxicol. 94 (4): 1085–1133. doi:10.1007/s00204-020-02693-7. PMC   7225206 . PMID   32249347.
  12. Canal CE (2018). "Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action". Handb Exp Pharmacol. 252: 227–260. doi:10.1007/164_2018_107. PMC   6136989 . PMID   29532180.
  13. 1 2 3 4 Greene, Shaun L (2013). "Benzofurans and Benzodifurans". Novel Psychoactive Substances. Elsevier. p. 383–392. doi:10.1016/b978-0-12-415816-0.00016-x. ISBN   978-0-12-415816-0 . Retrieved 2 November 2025. A patent granted to Eli Lilly and Company in 2006 classifies 5-APB and 6-APB as 5HT2C receptor agonists [15]. [...] Internet user reports of 5-APB and 6-APB date from late 2010 [13]. [...] Information regarding the desired clinical effects of 5-APB and 6-APB is limited to on-line user report forums. Limited user reports indicate that positive effects of 5-APB include increased empathy, variable euphoria, visual disturbances, appreciation for music and dancing and more general 'stimulation' as opposed to 6-APB [12,23–25]. Reported positive effects of 6-APB include increased tactile and visual stimulation, mild euphoria, and appreciation for music, visual hallucinations and increase in mood, feelings of peace, love and self-acceptance [10,11,13,14].
  14. 1 2 3 4 5 6 7 8 9 Brandt SD, Walters HM, Partilla JS, Blough BE, Kavanagh PV, Baumann MH (December 2020). "The psychoactive aminoalkylbenzofuran derivatives, 5-APB and 6-APB, mimic the effects of 3,4-methylenedioxyamphetamine (MDA) on monoamine transmission in male rats". Psychopharmacology (Berl). 237 (12): 3703–3714. doi:10.1007/s00213-020-05648-z. PMC   7686291 . PMID   32875347. The synthetic preparation of both 5-APB and 6-APB was first published in 2000 as part of a research program designed for the development of selective 5-HT2C receptor agonists (Briner et al. 2000; Briner et al. 2006) [...] Briner K, Burkhart JP, Burkholder TP, Fisher MJ, Gritton WH, Kohlman DT, Liang SX, Miller SC, Mullaney JT, Xu Y-C, Xu Y (2000) Aminoalkylbenzofurans as serotonin (5-HT(2C)) agonists Patent No. WO2000044737A1, Eli Lilly and Company, Indianapolis, IN, USA, 2000. Briner K, Burkhart JP, Burkholder TP, Fisher MJ, Gritton WH, Kohlman DT, Liang SX, Miller SC, Mullaney JT, Xu YC (2006) Aminoalkylbenzofurans as serotonin (5-HT(2C)) agonists Patent No. US7045545B1, Eli Lilly and Company, Indianapolis, IN, USA, 2006.
  15. 1 2 3 "Advantageous benzofuran compositions for mental disorders or enhancement". Google Patents. 8 December 2022. Retrieved 21 November 2024.
  16. 1 2 3 4 5 6 Johnson CB, Walther D, Baggott MJ, Baker LE, Baumann MH (September 2024). "Novel Benzofuran Derivatives Induce Monoamine Release and Substitute for the Discriminative Stimulus Effects of 3,4-Methylenedioxymethamphetamine". J Pharmacol Exp Ther. 391 (1): 22–29. doi:10.1124/jpet.123.001837. PMC   11413916 . PMID   38272669.
  17. 1 2 3 4 5 6 Fantegrossi WE, Gannon BM (September 2024). "A "Furious" Effort to Develop Novel 3,4-Methylenedioxymethamphetamine-Like Therapeutics". J Pharmacol Exp Ther. 391 (1): 18–21. doi:10.1124/jpet.124.002183. PMID   39293859.
  18. 1 2 Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (June 2003). "3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro". Molecular Pharmacology. 63 (6): 1223–1229. doi:10.1124/mol.63.6.1223. PMID   12761331. S2CID   839426.
  19. Blough B (July 2008). "Dopamine-releasing agents" (PDF). In Trudell ML, Izenwasser S (eds.). Dopamine Transporters: Chemistry, Biology and Pharmacology. Hoboken [NJ]: Wiley. pp. 305–320. ISBN   978-0-470-11790-3. OCLC   181862653. OL   18589888W.
  20. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID   11071707. S2CID   15573624.
  21. 1 2 Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (April 2012). "The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue". Neuropsychopharmacology. 37 (5): 1192–1203. doi:10.1038/npp.2011.304. PMC   3306880 . PMID   22169943.
  22. Marusich JA, Antonazzo KR, Blough BE, Brandt SD, Kavanagh PV, Partilla JS, Baumann MH (February 2016). "The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue". Neuropharmacology. 101: 68–75. doi:10.1016/j.neuropharm.2015.09.004. PMC   4681602 . PMID   26362361.
  23. Nagai F, Nonaka R, Satoh Hisashi Kamimura K (March 2007). "The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain". European Journal of Pharmacology. 559 (2–3): 132–137. doi:10.1016/j.ejphar.2006.11.075. PMID   17223101.
  24. Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (March 2013). "Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products". Neuropsychopharmacology. 38 (4): 552–562. doi:10.1038/npp.2012.204. PMC   3572453 . PMID   23072836.
  25. Sakloth, Farhana (11 December 2015). Psychoactive synthetic cathinones (or 'bath salts'): Investigation of mechanisms of action. VCU Scholars Compass (Thesis). doi:10.25772/AY8R-PW77 . Retrieved 24 November 2024.
  26. Glatfelter GC, Walther D, Evans-Brown M, Baumann MH (April 2021). "Eutylone and Its Structural Isomers Interact with Monoamine Transporters and Induce Locomotor Stimulation". ACS Chem Neurosci. 12 (7): 1170–1177. doi:10.1021/acschemneuro.0c00797. PMC   9423000 . PMID   33689284.
  27. Elmore JS, Dillon-Carter O, Partilla JS, Ellefsen KN, Concheiro M, Suzuki M, Rice KC, Huestis MA, Baumann MH (February 2017). "Pharmacokinetic Profiles and Pharmacodynamic Effects for Methylone and Its Metabolites in Rats". Neuropsychopharmacology. 42 (3): 649–660. doi:10.1038/npp.2016.213. PMC   5240186 . PMID   27658484.
  28. 1 2 3 4 Rickli A, Kopf S, Hoener MC, Liechti ME (July 2015). "Pharmacological profile of novel psychoactive benzofurans". Br J Pharmacol. 172 (13): 3412–3425. doi:10.1111/bph.13128. PMC   4500375 . PMID   25765500.
  29. 1 2 3 US 20230150963, Matthew Baggott,"Advantageous benzofuran compositions for mental disorders or enhancement",published 2023 May 18, assigned to Tactogen
  30. Nichols DE (1994). "Medicinal Chemistry and Structure–Activity Relationships". In Cho AK, Segal DS (eds.). Amphetamine and Its Analogs: Psychopharmacology, Toxicology, and Abuse. Academic Press. pp. 3–41. ISBN   978-0-12-173375-9. Very recently, the oxygen atoms in the dioxole ring of MDA were replaced individually with methylene units to give compounds 25, 26, and 27. In addition, the ring-expanded compound 28 was prepared for comparison. [...]
  31. Monte AP, Marona-Lewicka D, Cozzi NV, Nichols DE (November 1993). "Synthesis and pharmacological examination of benzofuran, indan, and tetralin analogues of 3,4-(methylenedioxy)amphetamine". J Med Chem. 36 (23): 3700–3706. doi:10.1021/jm00075a027. PMID   8246240.
  32. Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL (January 2013). "Neurochemical profiles of some novel psychoactive substances". Eur J Pharmacol. 700 (1–3): 147–151. doi:10.1016/j.ejphar.2012.12.006. PMC   3582025 . PMID   23261499.
  33. Dawson P, Opacka-Juffry J, Moffatt JD, Daniju Y, Dutta N, Ramsey J, Davidson C (January 2014). "The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat". Prog Neuropsychopharmacol Biol Psychiatry. 48: 57–63. doi:10.1016/j.pnpbp.2013.08.013. PMID   24012617.
  34. UK Home Office (5 March 2014). "The Misuse of Drugs Act 1971 (Ketamine etc.) (Amendment) Order 2014". UK Government. Retrieved 23 August 2016.
  35. "关于印发《非药用类麻醉药品和精神药品列管办法》的通知" (in Chinese). China Food and Drug Administration. 27 September 2015. Archived from the original on 1 October 2015. Retrieved 23 August 2016.
  36. "指定薬物名称・構造式一覧(平成27年9月16日現在)" (PDF) (in Japanese). 厚生労働省. 16 September 2015. Retrieved 23 August 2016.
  37. Tomaszewski Z, Johnson MP, Huang X, Nichols DE (May 1992). "Benzofuran bioisosteres of hallucinogenic tryptamines". Journal of Medicinal Chemistry. 35 (11): 2061–4. doi:10.1021/jm00089a017. PMID   1534585.
  38. Monte AP, Marona-Lewicka D, Cozzi NV, Nichols DE (November 1993). "Synthesis and pharmacological examination of benzofuran, indan, and tetralin analogues of 3,4-(methylenedioxy)amphetamine". Journal of Medicinal Chemistry. 36 (23): 3700–6. doi:10.1021/jm00075a027. PMID   8246240.
  39. USpatent 7045545,Karin Briner, Joseph Paul Burkhart, Timothy Paul Burkholder, Matthew Joseph Fisher, William Harlan Gritton, Daniel Timothy Kohlman, Sidney Xi Liang, Shawn Christopher Miller, Jeffrey Thomas Mullaney, Yao-Chang Xu, Yanping Xu,"Aminoalkylbenzofurans as serotonin (5-HT(2c)) agonists",published 19 January 2000,issued 16 May 2006
  40. "Temporary class drug order report on 5-6APB and NBOMe compounds". UK Home Office. 4 June 2013. Retrieved 23 August 2016.
  41. Stanczuk A, Morris N, Gardner EA, Kavanagh P (April 2013). "Identification of (2-aminopropyl)benzofuran (APB) phenyl ring positional isomers in internet purchased products". Drug Testing and Analysis. 5 (4): 270–6. doi:10.1002/dta.1451. PMID   23349125.
  42. Nichols DE, Hoffman AJ, Oberlender RA, Riggs RM (February 1986). "Synthesis and evaluation of 2,3-dihydrobenzofuran analogues of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane: drug discrimination studies in rats". Journal of Medicinal Chemistry. 29 (2): 302–4. doi:10.1021/jm00152a022. PMID   3950910.
  43. Nichols DE, Snyder SE, Oberlender R, Johnson MP, Huang XM (January 1991). "2,3-Dihydrobenzofuran analogues of hallucinogenic phenethylamines". Journal of Medicinal Chemistry. 34 (1): 276–81. doi:10.1021/jm00105a043. PMID   1992127.
  44. Monte AP, Marona-Lewicka D, Parker MA, Wainscott DB, Nelson DL, Nichols DE (July 1996). "Dihydrobenzofuran analogues of hallucinogens. 3. Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups". Journal of Medicinal Chemistry. 39 (15): 2953–61. doi:10.1021/jm960199j. PMID   8709129.
  45. Liu C, Jia W, Qian Z, Li T, Hua Z (February 2017). "Identification of five substituted phenethylamine derivatives 5-MAPDB, 5-AEDB, MDMA methylene homolog, 6-Br-MDMA, and 5-APB-NBOMe". Drug Testing and Analysis. 9 (2): 199–207. doi:10.1002/dta.1955. PMID   26856255.
  46. Wagmann L, Brandt SD, Stratford A, Maurer HH, Meyer MR (February 2019). "Interactions of phenethylamine-derived psychoactive substances of the 2C-series with human monoamine oxidases" (PDF). Drug Testing and Analysis. 11 (2): 318–324. doi:10.1002/dta.2494. PMID   30188017. S2CID   52166076.
  47. Wagmann L, Hempel N, Richter LH, Brandt SD, Stratford A, Meyer MR (October 2019). "Phenethylamine-derived new psychoactive substances 2C-E-FLY, 2C-EF-FLY, and 2C-T-7-FLY: Investigations on their metabolic fate including isoenzyme activities and their toxicological detectability in urine screenings". Drug Testing and Analysis. 11 (10): 1507–1521. doi: 10.1002/dta.2675 . PMID   31299701.
  48. Feng Z, Mohapatra S, Klimko PG, Hellberg MR, May JA, Kelly C, Williams G, McLaughlin MA, Sharif NA (June 2007). "Novel benzodifuran analogs as potent 5-HT2A receptor agonists with ocular hypotensive activity". Bioorg Med Chem Lett. 17 (11): 2998–3002. doi:10.1016/j.bmcl.2007.03.073. PMID   17419053.