Substituted cathinones, or simply cathinones, which include some stimulants and entactogens, are derivatives of cathinone. They feature a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon, along with additional substitutions. [1] [2] [3] [4] [5] Cathinone occurs naturally in the plant khat whose leaves are chewed as a recreational drug. [6]
Substituted cathinones act as monoamine releasing agents and/or monoamine reuptake inhibitors, including of norepinephrine, dopamine, and/or serotonin. [7] [8] [9] [10] [11] [12] In contrast to substituted amphetamines, substituted cathinones do not act as agonists of the human trace amine-associated receptor 1 (TAAR1). [13] [14] [15] This may potentiate their stimulating and addictive effects. [13] [14]
The derivatives may be produced by substitutions at four locations of the cathinone molecule:
The following table displays notable derivatives that have been reported: [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37]
Structure | Compound | R1 | R2 | R3 | R4 | CAS number |
---|---|---|---|---|---|---|
Cathinone | H | Me | H | H | 71031-15-7 | |
Methcathinone | H | Me | H | Me | 5650-44-2 | |
Ethcathinone | H | Me | H | Et | 51553-17-4 | |
Propylcathinone | H | Me | H | nPr | 52597-14-5 | |
Buphedrone | H | Et | H | Me | 408332-79-6 | |
N-Ethylbuphedrone (NEB) | H | Et | H | Et | 1354631-28-9 | |
N-Methyl-N-ethylbuphedrone | H | Et | Me | Et | ||
Pentedrone | H | nPr | H | Me | 879722-57-3 | |
N-Ethylpentedrone | H | nPr | H | Et | 18268-16-1 | |
N-Isopropylpentedrone | H | nPr | H | iPr | 18268-14-9 | |
Hexedrone | H | nBu | H | Me | 2169446-41-5 | |
N-Ethylhexedrone | H | nBu | H | Et | 18410-62-3 | |
N-Butylhexedrone | H | nBu | H | nBu | 18296-66-7 | |
N-Isobutylhexedrone (NDH) | H | nBu | H | i-Bu | ||
Isohexedrone | H | iBu | H | Me | ||
N-Ethylheptedrone | H | nPe | H | Et | ||
Octedrone | H | hexyl | H | Me | ||
Dimethylcathinone | H | Me | Me | Me | 15351-09-4 | |
Diethylpropion | H | Me | Et | Et | 134-80-5 | |
N-Methyl-N-ethylcathinone | H | Me | Me | Et | 1157739-24-6 | |
Bupropion | 3-Cl | Me | H | t-Bu | 34911-55-2 | |
Hydroxybupropion | 3-Cl | Me | H | 2-Me-3-OH-propan-2-yl | 357399-43-0 | |
Mephedrone | 4-Me | Me | H | Me | 1189805-46-6 | |
2-MMC | 2-Me | Me | H | Me | 1246911-71-6 | |
2-MEC | 2-Me | Me | H | Et | 1439439-84-5 | |
2-EMC | 2-Et | Me | H | Me | ||
2-EEC | 2-Et | Me | H | Et | 2446466-59-5 | |
3-MMC | 3-Me | Me | H | Me | 1246816-62-5 | |
3-MEC | 3-Me | Me | H | Et | 1439439-83-4 | |
3-MPC | 3-Me | Me | H | nPr | ||
3-EMC | 3-Et | Me | H | Me | ||
3-EEC | 3-Et | Me | H | Et | 2446466-61-9 | |
4-EMC | 4-Et | Me | H | Me | 1225622-14-9 | |
4-EEC | 4-Et | Me | H | Et | 2446466-62-0 | |
4-MC | 4-Me | Me | H | H | 31952-47-3 | |
Benzedrone | 4-Me | Me | H | Bn | 1225617-75-3 | |
2'-MeO-Benzedrone | 4-Me | Me | H | 2-MeO-Bn | ||
2,N-Dimethylbenzedrone | 2-Me | Me | Me | Bn | ||
3,N-Dimethylbenzedrone | 3-Me | Me | Me | Bn | ||
4,N-Dimethylbenzedrone | 4-Me | Me | Me | Bn | ||
4-MEC | 4-Me | Me | H | Et | 1225617-18-4 | |
4-MPC | 4-Me | Me | H | nPr | ||
N,N-DMMC | 4-Me | Me | Me | Me | 1448845-14-4 | |
N,N-MEMC | 4-Me | Me | Me | Et | ||
N,N-DEMC | 4-Me | Me | Et | Et | 676316-90-8 | |
4-MEAP | 4-Me | Pr | H | Et | 746540-82-9 | |
EDMC | 4-Et | Me | Me | Me | ||
2,3-DMMC | 2,3-dimethyl | Me | H | Me | ||
2,3-DMEC | 2,3-dimethyl | Me | H | Et | ||
2,4-DMMC | 2,4-dimethyl | Me | H | Me | 1225623-63-1 | |
2,4-DMEC | 2,4-dimethyl | Me | H | Et | 1225913-88-1 | |
2,5-DMMC | 2,5-dimethyl | Me | H | Me | ||
2,5-DMEC | 2,5-dimethyl | Me | H | Et | ||
2,6-DMMC | 2,6-dimethyl | Me | H | Me | ||
2,6-DMEC | 2,6-dimethyl | Me | H | Et | ||
3,4-DMMC | 3,4-dimethyl | Me | H | Me | 1082110-00-6 | |
3,4-DMEC | 3,4-dimethyl | Me | H | Et | 1225811-81-3 | |
3,5-DMEC | 3,5-dimethyl | Me | H | Et | ||
2,4,5-TMMC | 2,4,5-trimethyl | Me | H | Me | 1368603-85-3 | |
2,4,5-TMOMC | 2,4,5-trimethoxy | Me | H | Me | ||
3,4,5-TMOMC | 3,4,5-trimethoxy | Me | H | Me | ||
Methedrone | 4-MeO | Me | H | Me | 530-54-1 | |
Dimethedrone | 4-MeO | Me | Me | Me | 91564-39-5 | |
Ethedrone | 4-MeO | Me | H | Et | ||
2-MOMC | 2-MeO | Me | H | Me | ||
3-MOMC | 3-MeO | Me | H | Me | 1435933-70-2 | |
3-FC | 3-F | Me | H | H | 1082949-91-4 | |
4-FC | 4-F | Me | H | H | 80096-51-1 | |
2-FMC | 2-F | Me | H | Me | 1186137-35-8 | |
2-FEC | 2-F | Me | H | Et | ||
3-FMC | 3-F | Me | H | Me | 1049677-77-1 | |
3-FEC | 3-F | Me | H | Et | ||
2-CMC | 2-Cl | Me | H | Me | ||
2-BMC | 2-Br | Me | H | Me | ||
2-IMC | 2-I | Me | H | Me | ||
2-TFMAP | 2-CF3 | Me | H | Me | ||
Clophedrone | 3-Cl | Me | H | Me | 1049677-59-9 | |
3-CEC | 3-Cl | Me | H | Et | 2150476-60-9 | |
3-BMC | 3-Br | Me | H | Me | 676487-42-6 | |
3-IMC | 3-I | Me | H | Me | ||
3-TFMAP | 3-CF3 | Me | H | Me | ||
Flephedrone | 4-F | Me | H | Me | 447-40-5 | |
4-FEC | 4-F | Me | H | Et | 1225625-74-0 | |
Clephedrone | 4-Cl | Me | H | Me | 1225843-86-6 | |
2-CEC | 2-Cl | Me | H | Et | ||
4-CEC | 4-Cl | Me | H | Et | 14919-85-8 | |
2-CiPC | 2-Cl | Me | H | iPr | ||
3-CiPC | 3-Cl | Me | H | iPr | ||
4-CiPC | 4-Cl | Me | H | iPr | ||
4-CBC | 4-Cl | Me | H | nBu | 1225621-71-5 | |
2-CDMC | 2-Cl | Me | Me | Me | ||
3-CDMC | 3-Cl | Me | Me | Me | ||
4-CDMC | 4-Cl | Me | Me | Me | 1157667-29-2 | |
Brephedrone | 4-Br | Me | H | Me | 486459-03-4 | |
4-BEC | 4-Br | Me | H | Et | 135333-26-5 | |
4-IMC | 4-I | Me | H | Me | ||
4-TFMAP | 4-CF3 | Me | H | Me | ||
4-EFMC | 4-(2-fluoroethyl) | Me | H | Me | ||
4-MTMC | 4-SCH3 | Me | H | Me | ||
4-MSMC | 4-SO2CH3 | Me | H | Me | ||
4-PHMC | 4-phenyl | Me | H | Me | ||
Mexedrone | 4-Me | methoxymethyl | H | Me | ||
FMMC | 3-F-4-Me | Me | H | Me | 1696642-00-8 | |
MFMC | 3-Me-4-F | Me | H | Me | 1368943-21-8 | |
4-Cl-3-MMC | 3-Me-4-Cl | Me | H | Me | ||
MMOMC | 3-Me-4-MeO | Me | H | Me | ||
3,4-DCMC | 3,4-dichloro | Me | H | Me | 802281-39-6 | |
3,4-DCEC | 3,4-dichloro | Me | H | Et | 1225618-63-2 | |
3,5-DCMC | 3,5-dichloro | Me | H | Me | ||
3,5-DFMC | 3,5-difluoro | Me | H | Me | 1430343-55-7 | |
2,5-DMOMC | 2,5-dimethoxy | Me | H | Me | ||
βk-2C-C | 2,5-dimethoxy-4-chloro | H | H | H | 1538191-15-9 | |
βk-2C-B | 2,5-dimethoxy-4-bromo | H | H | H | 807631-09-0 | |
βk-2C-I | 2,5-dimethoxy-4-iodo | H | H | H | ||
βk-2C-D | 2,5-dimethoxy-4-methyl | H | H | H | 1368627-25-1 | |
βk-2C-E | 2,5-dimethoxy-4-ethyl | H | H | H | 1517021-02-1 | |
βk-2C-P | 2,5-dimethoxy-4-propyl | H | H | H | ||
βk-2C-iP | 2,5-dimethoxy-4-isopropyl | H | H | H | 1511033-62-7 | |
βk-DOB | 2,5-dimethoxy-4-bromo | Me | H | H | ||
βk-MDOM | 2,5-dimethoxy-4-methyl | Me | H | Me | ||
βk-MDA | 3,4-methylenedioxy | Me | H | H | 80535-73-5 | |
N-Acetyl-βk-MDA | 3,4-methylenedioxy | Me | H | acetyl | ||
2,3-MDMC | 2,3-methylenedioxy | Me | H | Me | 1427205-87-5 | |
Methylone | 3,4-methylenedioxy | Me | H | Me | 186028-79-5 | |
Dimethylone | 3,4-methylenedioxy | Me | Me | Me | 109367-07-9 | |
N-Acetylmethylone | 3,4-methylenedioxy | Me | acetyl | Me | ||
N-Hydroxymethylone | 3,4-methylenedioxy | Me | hydroxy | Me | ||
Ethylone | 3,4-methylenedioxy | Me | H | Et | 1112937-64-0 | |
Diethylone | 3,4-methylenedioxy | Me | Et | Et | ||
N-Acetylethylone | 3,4-methylenedioxy | Me | acetyl | Et | ||
N-Isopropyl-βk-MDA | 3,4-methylenedioxy | Me | H | iPr | ||
MDPT | 3,4-methylenedioxy | Me | H | t-Bu | 186028-84-2 | |
Benzylone (BMDP) | 3,4-methylenedioxy | Me | H | Bn | 1823274-68-5 | |
N-Cyclohexylmethylone | 3,4-methylenedioxy | Me | H | cyclohexyl | ||
3,4-EDMC | 3,4-ethylenedioxy | Me | H | Me | 30253-44-2 | |
βk-IMP | 3,4-trimethylene | Me | H | Me | 100608-69-3 | |
βk-IBP | 3,4-trimethylene | Et | H | Et | ||
βk-IVP | 3,4-trimethylene | nPr | H | Et | ||
3-Fluorobuphedrone | 3-F | Et | H | Me | ||
4-Fluorobuphedrone | 4-F | Et | H | Me | 1368599-12-5 | |
4-Bromobuphedrone | 4-Br | Et | H | Me | ||
3-Methylbuphedrone | 3-Me | Et | H | Me | 1797911-07-9 | |
4-Me-MABP | 4-Me | Et | H | Me | 1336911-98-8 | |
4-Me-NEB | 4-Me | Et | H | Et | 18268-19-4 | |
2-F-NEB | 2-F | Et | H | Et | ||
3F-NEB | 3-F | Et | H | Et | ||
4-F-NEB | 4-F | Et | H | Et | ||
4-Me-DMB | 4-Me | Et | Me | Me | ||
3,4-DMEB | 3,4-dimethyl | Et | H | Et | ||
4-Methoxybuphedrone | 4-MeO | Et | H | Me | ||
Butylone | 3,4-methylenedioxy | Et | H | Me | 802575-11-7 | |
Eutylone | 3,4-methylenedioxy | Et | H | Et | 802855-66-9 | |
βk-PBDB | 3,4-methylenedioxy | Et | H | nPr | ||
Bn-4-MeMABP | 4-Me | Et | H | Bn | 1445751-39-2 | |
BMDB | 3,4-methylenedioxy | Et | H | Bn | 1445751-47-2 | |
N-Cyclohexylbutylone | 3,4-methylenedioxy | Et | H | cyclohexyl | ||
βk-DMBDB | 3,4-methylenedioxy | Et | Me | Me | 802286-83-5 | |
βk-MMDMA | 3,4-methylenedioxy-5-MeO | Me | H | Me | 2230716-98-8 | |
βk-MMDMA-2 | 2-MeO-3,4-methylenedioxy | Me | H | Me | ||
βk-DMMDA | 2,5-diMeO-3,4-methylenedioxy | Me | H | H | ||
5-Methylmethylone | 3,4-methylenedioxy-5-Me | Me | H | Me | 1364933-83-4 | |
5-Methylethylone | 3,4-methylenedioxy-5-Me | Me | H | Et | 1364933-82-3 | |
2-Methylbutylone | 2-Me-3,4-methylenedioxy | Et | H | Me | 1364933-86-7 | |
5-Methylbutylone | 3,4-methylenedioxy-5-Me | Et | H | Me | 1354631-29-0 | |
Pentylone | 3,4-methylenedioxy | nPr | H | Me | 698963-77-8 | |
N-Ethylpentylone | 3,4-methylenedioxy | nPr | H | Et | 727641-67-0 | |
N-propylpentylone | 3,4-methylenedioxy | nPr | H | nPr | ||
N-butylpentylone | 3,4-methylenedioxy | nPr | H | nBu | ||
2,3-Dipentylone | 2,3-methylenedioxy | nPr | Me | Me | ||
Dipentylone | 3,4-methylenedioxy | nPr | Me | Me | 17763-13-2 | |
N,N-Diethylnorpentylone | 3,4-methylenedioxy | nPr | Et | Et | ||
Hexylone | 3,4-methylenedioxy | nBu | H | Me | ||
Isohexylone | 3,4-methylenedioxy | iBu | H | Me | 1157947-89-1 | |
Isoheptylone | 3,4-methylenedioxy | iPe | H | Me | ||
N-Ethylhexylone | 3,4-methylenedioxy | nBu | H | Et | 27912-41-0 | |
N-Ethylheptylone | 3,4-methylenedioxy | nPe | H | Et | ||
4-MEAP | 4-Me | nPr | H | Et | 746540-82-9 | |
3,4-DMEP | 3,4-dimethyl | nPr | H | Et | ||
2-F-Pentedrone | 2-F | nPr | H | Me | ||
3-F-Pentedrone | 3-F | nPr | H | Me | ||
4-F-Pentedrone | 4-F | nPr | H | Me | ||
4-Cl-Pentedrone | 4-Cl | nPr | H | Me | 2167949-43-9 | |
4-Methylpentedrone | 4-Me | nPr | H | Me | 1373918-61-6 | |
DL-4662 | 3,4-dimethoxy | nPr | H | Et | 1674389-55-9 | |
4-F-iPr-norpentedrone | 4-F | nPr | H | iPr | ||
3-CBV | 3-Cl | nPr | H | tBu | ||
4-methylhexedrone | 4-Me | nBu | H | Me | ||
MEH | 4-Me | nBu | H | Et | ||
3F-NEH | 3-F | nBu | H | Et | ||
4-F-hexedrone | 4-F | nBu | H | Me | ||
4-F-octedrone | 4-F | hexyl | H | Me | ||
α-phenylmephedrone | 4-Me | phenyl | H | Me | ||
βk-Ephenidine | H | phenyl | H | Et | 22312-16-9 | |
BMAPN | β-naphthyl instead of phenyl | Me | H | Me | ||
βk-Methiopropamine | thiophen-2-yl instead of phenyl | Me | H | Me | 24065-17-6 | |
5-Cl-bk-MPA | 5-chlorothiophen-2-yl instead of phenyl | Me | H | Me | ||
βk-5-MAPB | benzofuran-5-yl instead of phenyl | Me | H | Me | ||
βk-6-MAPB | benzofuran-6-yl instead of phenyl | Me | H | Me | ||
βk-5-IT | indol-5-yl instead of phenyl | Me | H | H | 1369231-36-6 | |
βk-5F-NM-AMT [38] | 5-fluoroindol-3-yl instead of phenyl | Me | H | Me | ||
α-Phthalimidopropiophenone | H | Me | phthalimido | 19437-20-8 | ||
PPPO | H | Me | piperidinyl | |||
PPBO | H | Et | piperidinyl | 92728-82-0 | ||
FPPVO | 4-F | nPr | piperidinyl | |||
3,4-Pr-PipVP | 3,4-trimethylene | nPr | piperidinyl | |||
MDPV-azepane | 3,4-methylenedioxy | nPr | azepane | |||
Caccure 907 | 4-SCH3 | α,α-di-Me | morpholinyl | |||
α-PPP | H | Me | pyrrolidinyl | 19134-50-0 | ||
α-PBP | H | Et | pyrrolidinyl | 13415-54-8 | ||
α-PVP (O-2387) | H | nPr | pyrrolidinyl | 14530-33-7 | ||
α-PHP | H | nBu | pyrrolidinyl | 13415-86-6 | ||
α-PHiP | H | iBu | pyrrolidinyl | |||
α-PEP (α-PHPP) | H | nPe | pyrrolidinyl | 13415-83-3 | ||
α-POP | H | hexyl | pyrrolidinyl | |||
α-PNP | H | heptyl | pyrrolidinyl | |||
DPPE (Alpha-D2PV) | H | phenyl | pyrrolidinyl | 27590-61-0 | ||
α-PcPeP | H | cyclopentyl | pyrrolidinyl | |||
α-PCYP | H | cyclohexyl | pyrrolidinyl | 1803168-11-7 | ||
2-MePPP | 2-Me | Me | pyrrolidinyl | 2092429-83-7 | ||
3-MePPP | 3-Me | Me | pyrrolidinyl | 1214940-01-8 | ||
4-MePPP | 4-Me | Me | pyrrolidinyl | 1313393-58-6 | ||
3-MeO-PPP | 3-MeO | Me | pyrrolidinyl | |||
MOPPP | 4-MeO | Me | pyrrolidinyl | 478243-09-3 | ||
3-F-PPP | 3-F | Me | pyrrolidinyl | 1214939-99-7 | ||
FPPP | 4-F | Me | pyrrolidinyl | 28117-76-2 | ||
Cl-PPP | 4-Cl | Me | pyrrolidinyl | 93307-24-5 | ||
3-Br-PPP | 3-Br | Me | pyrrolidinyl | |||
Br-PPP | 4-Br | Me | pyrrolidinyl | |||
2,3-DMPPP | 2,3-dimethyl | Me | pyrrolidinyl | |||
2,4-DMPPP | 2,4-dimethyl | Me | pyrrolidinyl | |||
3,4-DMPPP | 3,4-dimethyl | Me | pyrrolidinyl | |||
3-MPBP | 3-Me | Et | pyrrolidinyl | 1373918-60-5 | ||
3-F-PBP | 3-F | Et | pyrrolidinyl | 1373918-59-2 | ||
MPBP | 4-Me | Et | pyrrolidinyl | 732180-91-5 | ||
FPBP | 4-F | Et | pyrrolidinyl | 1373918-67-2 | ||
EPBP | 4-Et | Et | pyrrolidinyl | |||
MOPBP | 4-MeO | Et | pyrrolidinyl | |||
MMOPBP | 3-Me-4-MeO | Et | pyrrolidinyl | |||
O-2384 | 3,4-dichloro | Et | pyrrolidinyl | 850352-65-7 | ||
2-Me-PVP | 2-Me | nPr | pyrrolidinyl | 850352-54-4 | ||
3-Me-PVP | 3-Me | nPr | pyrrolidinyl | 13415-85-5 | ||
Pyrovalerone (O-2371) | 4-Me | nPr | pyrrolidinyl | 3563-49-3 | ||
4-Et-PVP | 4-Et | nPr | pyrrolidinyl | |||
3F-PVP | 3-F | nPr | pyrrolidinyl | 2725852-55-9 | ||
FPVP | 4-F | nPr | pyrrolidinyl | 850352-31-7 | ||
2-Cl-PVP | 2-Cl | nPr | pyrrolidinyl | |||
3-Cl-PVP | 3-Cl | nPr | pyrrolidinyl | |||
4-Cl-PVP | 4-Cl | nPr | pyrrolidinyl | 5537-17-7 | ||
3-Br-PVP | 3-Br | nPr | pyrrolidinyl | |||
4-Br-PVP | 4-Br | nPr | pyrrolidinyl | |||
MOPVP | 4-MeO | nPr | pyrrolidinyl | 5537-19-9 | ||
DMOPVP | 3,4-dimethoxy | nPr | pyrrolidinyl | 850442-84-1 | ||
DMPVP | 3,4-dimethyl | nPr | pyrrolidinyl | |||
O-2390 | 3,4-dichloro | nPr | pyrrolidinyl | 850352-61-3 | ||
MFPVP | 3-methyl-4-fluoro | nPr | pyrrolidinyl | |||
MPHP | 4-Me | nBu | pyrrolidinyl | 34138-58-4 | ||
3F-PHP | 3-F | nBu | pyrrolidinyl | |||
4F-PHP | 4-F | nBu | pyrrolidinyl | 2230706-09-7 | ||
4-Cl-PHP | 4-Cl | nBu | pyrrolidinyl | 2748592-29-0 | ||
DMOPHP | 3,4-dimethoxy | nBu | pyrrolidinyl | |||
MFPHP | 3-Me-4-F | nBu | pyrrolidinyl | |||
3F-PiHP | 3-F | iBu | pyrrolidinyl | |||
4F-PiHP | 4-F | iBu | pyrrolidinyl | |||
O-2394 | 4-Me | iBu | pyrrolidinyl | 850352-51-1 | ||
MPEP | 4-Me | pentyl | pyrrolidinyl | |||
4F-PV8 | 4-F | pentyl | pyrrolidinyl | |||
4-MeO-PV8 | 4-MeO | pentyl | pyrrolidinyl | |||
MFPEP | 3-Me-4-F | pentyl | pyrrolidinyl | |||
MCPEP | 3-Me-4-Cl | pentyl | pyrrolidinyl | |||
4F-PV9 | 4-F | hexyl | pyrrolidinyl | |||
4-MeO-PV9 | 4-MeO | hexyl | pyrrolidinyl | |||
α-Phenylpyrovalerone | 4-Me | phenyl | pyrrolidinyl | |||
MDPPP | 3,4-methylenedioxy | Me | pyrrolidinyl | 783241-66-7 | ||
MDMPP | 3,4-methylenedioxy | α,α-di-Me | pyrrolidinyl | |||
MDPBP | 3,4-methylenedioxy | Et | pyrrolidinyl | 784985-33-7 | ||
MDPV | 3,4-methylenedioxy | nPr | pyrrolidinyl | 687603-66-3 | ||
2,3-MDPV | 2,3-methylenedioxy | nPr | pyrrolidinyl | |||
5-Me-MDPV | 3,4-methylenedioxy-5-Me | nPr | pyrrolidinyl | |||
6-Me-MDPV | 2-Me-4,5-methylenedioxy | nPr | pyrrolidinyl | |||
6-MeO-MDPV | 2-MeO-4,5-methylenedioxy | nPr | pyrrolidinyl | |||
Br-MeO-MDPV | 2,3-methylenedioxy-4-MeO-5-Br | nPr | pyrrolidinyl | |||
MDPiVP | 3,4-methylenedioxy | iPr | pyrrolidinyl | |||
MDPHP | 3,4-methylenedioxy | nBu | pyrrolidinyl | 776994-64-0 | ||
MDPHiP | 3,4-methylenedioxy | iBu | pyrrolidinyl | |||
MDPEP (MD-PV8) | 3,4-methylenedioxy | pentyl | pyrrolidinyl | 24646-39-7 | ||
MDPOP (MD-PV9) | 3,4-methylenedioxy | hexyl | pyrrolidinyl | 24646-40-0 | ||
3,4-EtPV | 3,4-dimethylene | nPr | pyrrolidinyl | |||
5-PPDi | 3,4-trimethylene | Et | pyrrolidinyl | |||
Indanyl-α-PVP | 3,4-trimethylene | nPr | pyrrolidinyl | 2748590-83-0 | ||
5-BPDi | 3,4-trimethylene | nBu | pyrrolidinyl | |||
IPPV | 3,4-trimethylene | phenyl | pyrrolidinyl | |||
TH-PBP | 3,4-tetramethylene | Et | pyrrolidinyl | |||
TH-PVP | 3,4-tetramethylene | nPr | pyrrolidinyl | 2304915-07-7 | ||
TH-PHP | 3,4-tetramethylene | nBu | pyrrolidinyl | |||
5-DBFPV | 2,3-dihydrobenzofuran-5-yl instead of Ph | nPr | pyrrolidinyl | 1620807-94-4 | ||
3-BF-PVP | benzofuran-3-yl instead of Ph | nPr | pyrrolidinyl | |||
Naphyrone (O-2482) | β-naphthyl instead of phenyl | nPr | pyrrolidinyl | 850352-53-3 | ||
α-Naphyrone | α-naphthyl instead of phenyl | nPr | pyrrolidinyl | |||
α-PPT | thiophen-2-yl instead of phenyl | Me | pyrrolidinyl | |||
α-PBT | thiophen-2-yl instead of phenyl | Et | pyrrolidinyl | |||
α-PVT | thiophen-2-yl instead of phenyl | nPr | pyrrolidinyl | 1400742-66-6 | ||
On 2 April 2010, the Advisory Council on the Misuse of Drugs in the UK announced that a broad structure-based ban of this entire class of compounds would be instituted, following extensive publicity around grey-market sales and recreational use of mephedrone, a common member of the family. This ban covers compounds with the aforementioned general structure, with 28 compounds specifically named. [39]
"Any compound (not being bupropion or a substance for the time being specified in paragraph 2.2) structurally derived from 2-amino-1-phenyl-1-propanone by modification in any of the following ways, that is to say,
(i) by substitution in the phenyl ring to any extent with alkyl, alkoxy, alkylenedioxy, haloalkyl or halide substituents, whether or not further substituted in the phenyl ring by one or more other univalent substituents;
(ii) by substitution at the 3-position with an alkyl substituent;
(iii) by substitution at the nitrogen atom with alkyl or dialkyl groups, or by inclusion of the nitrogen atom in a cyclic structure."
— ACMD, 2 April 2010
This text was added as an amendment to the Misuse of Drugs Act 1971, to come into force on 16 April 2010. [40] Note that four of the above compounds (cathinone, methcathinone, diethylpropion and pyrovalerone) were already illegal in the UK at the time the ACMD report was issued. Two compounds were specifically excluded from the ban, these being bupropion because of its common use in medicine and relative lack of abuse potential, and naphyrone because its structure falls outside the generic definition and not enough evidence was yet available to justify a ban.
Naphyrone analogues were subsequently banned in July 2010 following a further review by the ACMD, [41] [42] along with a further broad based structure ban even more expansive than the last. [43] [44]
"Any compound structurally derived from 2–aminopropan–1–one by substitution at the 1-position with any monocyclic, or fused-polycyclic ring system (not being a phenyl ring or alkylenedioxyphenyl ring system), whether or not the compound is
further modified in any of the following ways, that is to say—
(i) by substitution in the ring system to any extent with alkyl, alkoxy, haloalkyl or halide substituents, whether or not further substituted in the ring system by one or more other univalent substituents;
(ii) by substitution at the 3–position with an alkyl substituent;
(iii) by substitution at the 2-amino nitrogen atom with alkyl or dialkyl groups, or
by inclusion of the 2-amino nitrogen atom in a cyclic structure".
— Home Office, 13 July 2010.
The substitutions in the general structure for naphyrone analogues subject to the ban may be described as follows:
More new derivatives have however continued to appear, with the UK reporting more novel cathinone derivatives detected in 2010 than any other country in Europe, with most of them first identified after the generic ban had gone into effect and thus already being illegal despite never having been previously reported. [45]
In the United States, substituted cathinones are the psychoactive ingredients in "bath salts" which as of July 2011 were banned by at least 28 states, but not by the federal government. [46]
The Misuse of Drugs Act 1971 is an act of the Parliament of the United Kingdom. It represents action in line with treaty commitments under the Single Convention on Narcotic Drugs, the Convention on Psychotropic Substances, and the United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances.
Methylone, also known as 3,4-methylenedioxy-N-methylcathinone (MDMC), is an empathogen and stimulant psychoactive drug. It is a member of the amphetamine, cathinone and methylenedioxyphenethylamine classes.
α-Pyrrolidinopropiophenone (α-PPP), is a stimulant drug. It is similar in structure to the appetite suppressant diethylpropion and has analogous effects in animals. Little is known about this compound, but it has been detected by laboratories in Germany as an ingredient in "ecstasy" tablets seized by law enforcement authorities. This drug has been found to produce stimulant effects in animals and produces highly stimulating effects in humans, based on the experiences of the individuals who have tried it. Most of the individuals who have tried it prefer α-PVP to it, but prefer this drug over α-PVT. It is said to lack euphoria compared to α-PVP.
MDAI, also known as 5,6-methylenedioxy-2-aminoindane, is an entactogen drug of the 2-aminoindane group which is related to MDMA and produces similar subjective effects.
2-Aminoindane (2-AI) is an aminoindane and research chemical with applications in neurologic disorders and psychotherapy that has also been sold as a designer drug. It acts as a selective substrate for NET and DAT.
Substituted phenethylamines are a chemical class of organic compounds that are based upon the phenethylamine structure; the class is composed of all the derivative compounds of phenethylamine which can be formed by replacing, or substituting, one or more hydrogen atoms in the phenethylamine core structure with substituents.
α-Pyrrolidinopentiophenone (α-PVP), also known as α-pyrrolidinovalerophenone, O-2387, β-keto-prolintane, prolintanone, or desmethylpyrovalerone, is a synthetic stimulant of the cathinone class developed in the 1960s that has been sold as a designer drug and often consumed for recreational reasons. α-PVP is chemically related to pyrovalerone and is the ketone analog of prolintane.
3-Fluoroamphetamine is a stimulant drug from the amphetamine family which acts as a monoamine releaser with similar potency to methamphetamine but more selectivity for dopamine and norepinephrine release over serotonin. It is self-administered by mice to a similar extent to related drugs such as 4-fluoroamphetamine and 3-methylamphetamine.
Cannabicyclohexanol is a cannabinoid receptor agonist drug, developed by Pfizer in 1979. On 19 January 2009, the University of Freiburg in Germany announced that an analog of CP 47,497 was the main active ingredient in the herbal incense product Spice, specifically the 1,1-dimethyloctyl homologue of CP 47,497, which is now known as cannabicyclohexanol. The 1,1-dimethyloctyl homologue of CP 47,497 is in fact several times more potent than the parent compound, which is somewhat unexpected as the 1,1-dimethylheptyl is the most potent substituent in classical cannabinoid compounds such as HU-210.
6-(2-Aminopropyl)indole is an indole derivative which was first identified being sold on the designer drug market by a laboratory in the Czechia in July 2016.
Substituted phenylmorpholines, or substituted phenmetrazines alternatively, are chemical derivatives of phenylmorpholine or of the psychostimulant drug phenmetrazine. Most such compounds act as releasers of monoamine neurotransmitters, and have stimulant effects. Some also act as agonists at serotonin receptors, and compounds with an N-propyl substitution act as dopamine receptor agonists. A number of derivatives from this class have been investigated for medical applications, such as for use as anorectics or medications for the treatment of ADHD. Some compounds have also become subject to illicit use as designer drugs.
The substituted benzofurans are a class of chemical compounds based on the heterocyclyc and polycyclic compound benzofuran. Many medicines use the benzofuran core as a scaffold, but most commonly the term is used to refer to the simpler compounds in this class which include numerous psychoactive drugs, including stimulants, psychedelics and empathogens. In general, these compounds have a benzofuran core to which a 2-aminoethyl group is attached, and combined with a range of other substituents. Some psychoactive derivatives from this family have been sold under the name Benzofury.
N-Ethylhexedrone (also known as α-ethylaminocaprophenone, N-ethylnorhexedrone, hexen, and NEH) is a stimulant of the cathinone class that acts as a norepinephrine–dopamine reuptake inhibitor (NDRI) with IC50 values of 0.0978 and 0.0467 μM, respectively. N-Ethylhexedrone was first mentioned in a series of patents by Boehringer Ingelheim in the 1960s which led to the development of the better-known drug methylenedioxypyrovalerone (MDPV). Since the mid-2010s, N-ethylhexedrone has been sold online as a designer drug. In 2018, N-ethylhexedrone was the second most common drug of the cathinone class to be identified in Drug Enforcement Administration seizures.
5-MBPB is an amphetamine derivative which is structurally related to MDMA and has been sold as a designer drug. It can be described as the benzofuran-5-yl analogue of MBDB or the butanamine homologue of 5-MAPB, and is also a structural isomer of 5-EAPB and 6-EAPB. Anecdotal reports suggest this compound has been sold as a designer drug in various European countries since early 2015, but the first definitive identification was made in December 2015 by a forensic laboratory in Slovenia.
α-Pyrrolidinoisohexanophenone is a stimulant drug of the cathinone class that has been sold online as a designer drug. It acts as a potent norepinephrine-dopamine reuptake inhibitor (NDRI). In July 2016 α-PHiP was first identified as a designer drug when it was reported to the EMCDDA by a forensic laboratory in Slovenia. It is a positional isomer of pyrovalerone, with the methyl group shifted from the 4-position of the aromatic ring to the 4-position of the acyl chain. Similarly to other cathinones, use of α-PiHP can result in compulsive redosing, addiction, anxiety, paranoia, and psychosis.
TH-PVP is a substituted cathinone derivative which has been sold as a designer drug. It was first identified by a forensic laboratory in Hungary in 2015, but has subsequently been found in numerous other countries around the world including Spain, Belgium, Poland, Turkey and Brazil. Pharmacological studies in vitro showed it to inhibit reuptake and promote the release of monoamine neurotransmitters with some selectivity for serotonin, but it failed to produce stimulant effects in animals, and has a pharmacological profile more comparable to that of sedating empathogens such as MDAI and 5-Methyl-MDA.
4-Methylphenmetrazine is a recreational designer drug with stimulant effects. It is a substituted phenylmorpholine derivative, closely related to better known drugs such as phenmetrazine and 3-fluorophenmetrazine. It was first identified in Slovenia in 2015, and has been shown to act as a monoamine releaser with some preference for serotonin release.
Butylamphetamine (code name PAL-90; also known as N-butylamphetamine or NBA) is a psychostimulant of the substituted amphetamine family which was never marketed. It is the N-butyl analogue of amphetamine and is approximately 6-fold less potent than amphetamine in rats. The drug has been found to be inactive as a dopamine reuptake inhibitor or releasing agent (IC50Tooltip half-maximal inhibitory concentration and EC50Tooltip half-maximal effective concentration > 10,000 nM, respectively). With regard to structure–activity relationships, the potency of N-substituted amphetamine derivatives decreases with increasing chain length in terms of both in vitro and in vivo activity. The pharmacokinetics of butylamphetamine have been studied in humans. It can be metabolized by CYP2D6 via ring hydroxylation similarly to amphetamine.
Substituted β-hydroxyamphetamines, or simply β-hydroxyamphetamines, also known as substituted phenylisopropanolamines, substituted phenylpropanolamines, substituted norephedrines, or substituted cathinols, are derivatives of β-hydroxyamphetamine with one or more chemical substituents. They are substituted phenethylamines, phenylethanolamines (β-hydroxyphenethylamines), and amphetamines (α-methylphenethylamines), and are closely related to but distinct from the substituted cathinones (β-ketoamphetamines). Examples of β-hydroxyamphetamines include the β-hydroxyamphetamine stereoisomers phenylpropanolamine and cathine and the stereospecific N-methylated β-hydroxyamphetamine derivatives ephedrine and pseudoephedrine, among many others.
4-Fluoroephedrine (4-FEP) is a "novel psychoactive substance" and substituted β-hydroxyamphetamine derivative related to ephedrine.
Another feature that distinguishes [substituted cathinones (SCs)] from amphetamines is their negligible interaction with the trace amine associated receptor 1 (TAAR1). Activation of this receptor reduces the activity of dopaminergic neurones, thereby reducing psychostimulatory effects and addictive potential (Miller, 2011; Simmler et al., 2016). Amphetamines are potent agonists of this receptor, making them likely to self‐inhibit their stimulating effects. In contrast, SCs show negligible activity towards TAAR1 (Kolaczynska et al., 2021; Rickli et al., 2015; Simmler et al., 2014, 2016). [...] The lack of self‐regulation by TAAR1 may partly explain the higher addictive potential of SCs compared to amphetamines (Miller, 2011; Simmler et al., 2013).