Substituted cathinone

Last updated

Cathinone Cathinone.svg
Cathinone
General chemical structure of substituted cathinones, with R1-R4 defined in text Substituted cathinone.svg
General chemical structure of substituted cathinones, with R1-R4 defined in text

Substituted cathinones, or simply cathinones, which include some stimulants and entactogens, are derivatives of cathinone. They feature a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon, along with additional substitutions. [1] [2] [3] [4] [5] Cathinone occurs naturally in the plant khat whose leaves are chewed as a recreational drug. [6]

Contents

Substituted cathinones act as monoamine releasing agents and/or monoamine reuptake inhibitors, including of norepinephrine, dopamine, and/or serotonin. [7] [8] [9] [10] [11] [12] In contrast to substituted amphetamines, most substituted cathinones do not act as agonists of the human trace amine-associated receptor 1 (TAAR1). [13] [14] [15] This may potentiate their stimulating and addictive effects. [13] [14] In addition, β-keto-substituted phenethylamines, such as βk-2C-B, appear to show dramatically reduced potency and efficacy as serotonin 5-HT2A receptor agonists compared to their non-β-keto-substituted counterparts. [16]

Monoamine release profiles

The following is a list of serotonin, dopamine, and norepinephrine releasing profiles for various cathinones, measured in rat brain synaptosomes. [7] [8] [17]

List of substituted cathinones

The derivatives may be produced by substitutions at four locations of the cathinone molecule:


The following table displays notable derivatives that have been reported: [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76]

StructureCompoundR1R2R3R4CAS number
Cathinone.svg Cathinone H Me H H 71031-15-7
Methcathinone skeletal.svg Methcathinone HMeHMe5650-44-2
Ethcathinone.svg Ethcathinone HMeH Et 51553-17-4
Propylcathinone structure.png PropylcathinoneHMeH nPr 52597-14-5
Buphedrone.svg Buphedrone HEtHMe408332-79-6
N-Ethylbuphedrone.svg N-Ethylbuphedrone (NEB)HEtHEt1354631-28-9
Methylethylbuphedrone structure.png N-Methyl-N-ethylbuphedroneHEtMeEt
Pentedrone.svg Pentedrone HnPrHMe879722-57-3
N-Ethylpentedrone structure.png N-Ethylpentedrone HnPrHEt18268-16-1
N-Isopropylpentedrone structure.png N-IsopropylpentedroneHnPrHiPr18268-14-9
Hexedrone.png Hexedrone HnBuHMe2169446-41-5
Ethylhexedrone.svg N-Ethylhexedrone HnBuHEt18410-62-3
Butylhexedrone structure.png N-ButylhexedroneHnBuHnBu18296-66-7
Isobutylhexedrone structure.png N-Isobutylhexedrone (NDH)HnBuH i-Bu
Isohexedrone structure.png IsohexedroneHiBuHMe
N-ethylheptedrone structure.png N-Ethylheptedrone HnPeHEt
Octedrone structure.png OctedroneH hexyl HMe
Dimethylcathinone.svg Dimethylcathinone HMeMeMe15351-09-4
Amfepramone.svg Diethylpropion HMeEtEt134-80-5
NN-methylethylcathinone structure.png N-Methyl-N-ethylcathinoneHMeMeEt1157739-24-6
Bupropion 1.svg Bupropion 3-ClMeH t-Bu 34911-55-2
Hydroxybupropion.svg Hydroxybupropion 3-ClMeH2-Me-3-OH-propan-2-yl357399-43-0
4-Methylmethcathinone.svg Mephedrone 4-MeMeHMe1189805-46-6
2-MMC structure.png 2-MMC 2-MeMeHMe1246911-71-6
2-MEC structure.png 2-MEC2-MeMeHEt1439439-84-5
2-EMC structure.png 2-EMC2-EtMeHMe
2-EEC structure.png 2-EEC2-EtMeHEt2446466-59-5
3-methylmethcathinone.svg 3-MMC 3-MeMeHMe1246816-62-5
3-MEC structure.png 3-MEC3-MeMeHEt1439439-83-4
3-MPC structure.png 3-MPC3-MeMeHnPr
3-EMC structure.png 3-EMC3-EtMeHMe
3-EEC structure.png 3-EEC3-EtMeHEt2446466-61-9
4-Ethylmethcathinone.svg 4-EMC 4-EtMeHMe1225622-14-9
4-EEC structure.png 4-EEC4-EtMeHEt2446466-62-0
4-Methylcathinone.png 4-MC 4-MeMeHH31952-47-3
Benzedrone.svg Benzedrone 4-MeMeH Bn 1225617-75-3
2'-MeO-benzedrone structure.png 2'-MeO-Benzedrone4-MeMeH2-MeO-Bn
2,N-DM-Benzedrone structure.png 2,N-Dimethylbenzedrone2-MeMeMeBn
3,N-DM-Benzedrone structure.png 3,N-Dimethylbenzedrone3-MeMeMeBn
4,N-DM-Benzedrone structure.png 4,N-Dimethylbenzedrone4-MeMeMeBn
4-MEC.svg 4-MEC 4-MeMeHEt1225617-18-4
4-methyl-propylcathinone structure.png 4-MPC4-MeMeHnPr
NN-DMMC structure.png N,N-DMMC4-MeMeMeMe1448845-14-4
NN-MEMC structure.png N,N-MEMC4-MeMeMeEt
NN-DEMC structure.png N,N-DEMC4-MeMeEtEt676316-90-8
4-MEAP.svg 4-MEAP 4-MePrHEt746540-82-9
4-EDMC structure.png EDMC4-EtMeMeMe
2,3-DMMC structure.png 2,3-DMMC2,3-dimethylMeHMe
2,3-DMEC structure.png 2,3-DMEC2,3-dimethylMeHEt
2,4-DMMC structure.png 2,4-DMMC2,4-dimethylMeHMe1225623-63-1
2,4-DMEC structure.png 2,4-DMEC2,4-dimethylMeHEt1225913-88-1
2,5-DMMC structure.png 2,5-DMMC2,5-dimethylMeHMe
2,5-DMEC structure.png 2,5-DMEC2,5-dimethylMeHEt
2,6-DMMC structure.png 2,6-DMMC2,6-dimethylMeHMe
2,6-DMEC structure.png 2,6-DMEC2,6-dimethylMeHEt
3,4-DMMC.svg 3,4-DMMC 3,4-dimethylMeHMe1082110-00-6
3,4-DMEC structure.png 3,4-DMEC3,4-dimethylMeHEt1225811-81-3
3,5-DMEC structure.png 3,5-DMEC3,5-dimethylMeHEt
245-TMMC structure.png 2,4,5-TMMC2,4,5-trimethylMeHMe1368603-85-3
245-TMOMC structure.png 2,4,5-TMOMC2,4,5-trimethoxyMeHMe
345-TMOMC structure.png 3,4,5-TMOMC3,4,5-trimethoxyMeHMe
4-Methoxymethcathinone.svg Methedrone 4-MeO MeHMe530-54-1
Dimethedrone structure.png Dimethedrone4-MeO MeMeMe91564-39-5
Ethedrone structure.png Ethedrone4-MeOMeHEt
2-MOMC structure.png 2-MOMC2-MeOMeHMe
3-MOMC structure.png 3-MOMC3-MeOMeHMe1435933-70-2
3-fluorocathinone structure.png 3-FC3-FMeHH1082949-91-4
4-fluorocathinone structure.png 4-FC4-FMeHH80096-51-1
2-Fluoromethcathinone.svg 2-FMC2-FMeHMe1186137-35-8
2-FEC structure.png 2-FEC2-FMeHEt
3-fluoromethcathinone.svg 3-FMC 3-FMeHMe1049677-77-1
3-FEC structure.png 3-FEC3-FMeHEt
2-CMC structure.png 2-CMC2-ClMeHMe
2-BMC structure.png 2-BMC2-BrMeHMe
2-IMC structure.png 2-IMC2-IMeHMe
2-TFMMC structure.png 2-TFMAP2-CF3MeHMe
3-Chloromethcathinone structure.png Clophedrone (3-CMC)3-ClMeHMe1049677-59-9
3-CEC structure.png 3-CEC 3-ClMeHEt2150476-60-9
3-BMC structure.png 3-BMC3-BrMeHMe676487-42-6
3-IMC structure.png 3-IMC3-IMeHMe
3-TFMMC structure.png 3-TFMAP3-CF3MeHMe
4-fluoromethcathinone.svg Flephedrone 4-F MeHMe447-40-5
4-Fluoroethcathinone Structure.svg 4-FEC 4-FMeHEt1225625-74-0
4-Chloromethcathinone.svg Clephedrone (4-CMC)4-ClMeHMe1225843-86-6
2Cl-NEC structure.png 2-CEC2-ClMeHEt
4-CEC structure.png 4-CEC4-ClMeHEt14919-85-8
2Cl-NiPC structure.png 2-CiPC2-ClMeHiPr
3Cl-NiPC structure.png 3-CiPC3-ClMeHiPr
4-CiPC structure.png 4-CiPC4-ClMeHiPr
4-CBC structure.png 4-CBC4-ClMeHnBu1225621-71-5
2Cl-DMC structure.png 2-CDMC2-ClMeMeMe
3Cl-DMC structure.png 3-CDMC3-ClMeMeMe
4-CDMC structure.png 4-CDMC4-ClMeMeMe1157667-29-2
4-bromomethcathinone.svg Brephedrone 4-Br MeHMe486459-03-4
4-BEC structure.png 4-BEC4-BrMeHEt135333-26-5
4-IMC structure.png 4-IMC4-IMeHMe
4-TFMMC structure.png 4-TFMAP4-CF3MeHMe
4-EFMC structure.png 4-EFMC4-(2-fluoroethyl)MeHMe
4-MTMC structure.png 4-MTMC4-SCH3MeHMe
4-MSMC structure.png 4-MSMC4-SO2CH3MeHMe
4-PHMC structure.png 4-PHMC4-phenylMeHMe
Mexedrone.svg Mexedrone 4-MemethoxymethylHMe
3,4-FMMC structure.png FMMC3-F-4-MeMeHMe1696642-00-8
3,4-MFMC structure.png MFMC3-Me-4-FMeHMe1368943-21-8
4-Cl-3-MMC structure.png 4-Cl-3-MMC 3-Me-4-ClMeHMe
3,4-MMOMC structure.png MMOMC3-Me-4-MeOMeHMe
3,4-DCMC structure.png 3,4-DCMC3,4-dichloroMeHMe802281-39-6
3,4-DCEC structure.png 3,4-DCEC3,4-dichloroMeHEt1225618-63-2
3,5-DCMC structure.png 3,5-DCMC3,5-dichloroMeHMe
3,5-DFMC structure.png 3,5-DFMC 3,5-difluoroMeHMe1430343-55-7
2,5-DMOMC structure.png 2,5-DMOMC2,5-dimethoxyMeHMe
Bk2CC structure.png βk-2C-C2,5-dimethoxy-4-chloroHHH1538191-15-9
Bk-2C-B-skeletal.svg βk-2C-B 2,5-dimethoxy-4-bromoHHH807631-09-0
Bk2CI structure.png βk-2C-I2,5-dimethoxy-4-iodoHHH
Bk2CD structure.png βk-2C-D2,5-dimethoxy-4-methylHHH1368627-25-1
Bk2CE structure.png βk-2C-E2,5-dimethoxy-4-ethylHHH1517021-02-1
Bk2CP structure.png βk-2C-P2,5-dimethoxy-4-propylHHH
Bk2CiP structure.png βk-2C-iP2,5-dimethoxy-4-isopropylHHH1511033-62-7
BkDOB structure.png βk-DOB2,5-dimethoxy-4-bromoMeHH
BkMDOM structure.png βk-MDOM2,5-dimethoxy-4-methylMeHMe
Methylenedioxycathinone.svg βk-MDA 3,4-methylenedioxyMeHH80535-73-5
BkMDAc structure.png N-Acetyl-βk-MDA3,4-methylenedioxyMeHacetyl
2,3-MDMC structure.png 2,3-MDMC2,3-methylenedioxyMeHMe1427205-87-5
Methylone.svg Methylone 3,4-methylenedioxyMeHMe186028-79-5
Dimethylone.svg Dimethylone 3,4-methylenedioxyMeMeMe109367-07-9
NAc-Methylone structure.png N-Acetylmethylone3,4-methylenedioxyMeacetylMe
NOH-Methylone structure.png N-Hydroxymethylone3,4-methylenedioxyMehydroxyMe
Bk-MDEA.svg Ethylone 3,4-methylenedioxyMeHEt1112937-64-0
Diethylone structure.png Diethylone3,4-methylenedioxyMeEtEt
NAc-Ethylone structure.png N-Acetylethylone3,4-methylenedioxyMeacetylEt
BkMDiP structure.png N-Isopropyl-βk-MDA3,4-methylenedioxyMeHiPr
BkMDtB structure.png MDPT3,4-methylenedioxyMeHt-Bu186028-84-2
BMDP structure.png Benzylone (BMDP)3,4-methylenedioxyMeHBn1823274-68-5
N-Cyclohexylmethylone structure.png N-Cyclohexylmethylone 3,4-methylenedioxyMeHcyclohexyl
3,4-EDMC structure.png 3,4-EDMC3,4-ethylenedioxyMeHMe30253-44-2
BkIMP structure.png βk-IMP3,4-trimethyleneMeHMe100608-69-3
BkIEB structure.png βk-IBP3,4-trimethyleneEtHEt
BkIEV structure.png βk-IVP3,4-trimethylenenPrHEt
3-fluorobuphedrone structure.png 3-Fluorobuphedrone3-FEtHMe
4-fluorobuphedrone structure.png 4-Fluorobuphedrone4-FEtHMe1368599-12-5
4-bromobuphedrone structure.png 4-Bromobuphedrone4-BrEtHMe
3-Methylbuphedrone structure.png 3-Methylbuphedrone3-MeEtHMe1797911-07-9
4-Methylbuphedrone.png 4-Me-MABP 4-MeEtHMe1336911-98-8
4-Me-NEB structure.png 4-Me-NEB4-MeEtHEt18268-19-4
2F-NEB structure.png 2-F-NEB2-FEtHEt
3F-NEB structure.png 3F-NEB 3-FEtHEt
4-F-NEB structure.png 4-F-NEB4-FEtHEt
4-Me-DMB structure.png 4-Me-DMB4-MeEtMeMe
3,4-DMEB structure.png 3,4-DMEB3,4-dimethylEtHEt
4-methoxybuphedrone structure.png 4-Methoxybuphedrone4-MeOEtHMe
Bk-MBDB.svg Butylone 3,4-methylenedioxyEtHMe802575-11-7
Eutylone.svg Eutylone 3,4-methylenedioxyEtHEt802855-66-9
BkPBDB structure.png βk-PBDB3,4-methylenedioxyEtHnPr
Bn-4-Me-MABP structure.png Bn-4-MeMABP4-MeEtHBn1445751-39-2
BMDB structure.png BMDB3,4-methylenedioxyEtHBn1445751-47-2
N-Cyclohexylbutylone structure.png N-Cyclohexylbutylone3,4-methylenedioxyEtHcyclohexyl
Dibutylone.svg βk-DMBDB 3,4-methylenedioxyEtMeMe802286-83-5
BkMMDMA structure.png βk-MMDMA 3,4-methylenedioxy-5-MeOMeHMe2230716-98-8
2-methoxymethylone structure.png βk-MMDMA-22-MeO-3,4-methylenedioxyMeHMe
BkDMMDA structure.png βk-DMMDA2,5-diMeO-3,4-methylenedioxyMeHH
5-methylmethylone structure.png 5-Methylmethylone3,4-methylenedioxy-5-MeMeHMe1364933-83-4
5-Methylethylone.svg 5-Methylethylone 3,4-methylenedioxy-5-MeMeHEt1364933-82-3
2-methylbutylone structure.png 2-Methylbutylone2-Me-3,4-methylenedioxyEtHMe1364933-86-7
5-methylbutylone structure.png 5-Methylbutylone3,4-methylenedioxy-5-MeEtHMe1354631-29-0
Pentylone.svg Pentylone 3,4-methylenedioxynPrHMe698963-77-8
N-Ethylpentylone.svg N-Ethylpentylone 3,4-methylenedioxynPrHEt727641-67-0
N-propylpentylone structure.png N-propylpentylone3,4-methylenedioxynPrHnPr
N-butylpentylone structure.png N-butylpentylone3,4-methylenedioxynPrHnBu
2,3-Dipentylone structure.png 2,3-Dipentylone2,3-methylenedioxynPrMeMe
Dipentylone.svg Dipentylone 3,4-methylenedioxynPrMeMe17763-13-2
NN-diethyl-pentylone structure.png N,N-Diethylnorpentylone3,4-methylenedioxynPrEtEt
Hexylone structure.png Hexylone3,4-methylenedioxynBuHMe
Isohexylone structure.png Isohexylone 3,4-methylenedioxyiBuHMe1157947-89-1
Isoheptylone structure.png Isoheptylone3,4-methylenedioxyiPeHMe
N-ethylhexylone structure.png N-Ethylhexylone 3,4-methylenedioxynBuHEt27912-41-0
N-ethylheptylone structure.png N-Ethylheptylone 3,4-methylenedioxynPeHEt
4-MEAP.svg 4-MEAP 4-MenPrHEt746540-82-9
3,4-DMEP structure.png 3,4-DMEP3,4-dimethylnPrHEt
2F-Pentedrone structure.png 2-F-Pentedrone2-FnPrHMe
3F-Pentedrone structure.png 3-F-Pentedrone3-FnPrHMe
4-fluoropentedrone structure.png 4-F-Pentedrone4-FnPrHMe
4-chloropentedrone structure.png 4-Cl-Pentedrone4-ClnPrHMe2167949-43-9
4-Methylpentedrone.png 4-Methylpentedrone 4-MenPrHMe1373918-61-6
DL-4662 structure.png DL-46623,4-dimethoxynPrHEt1674389-55-9
4F-NiP-pentedrone structure.png 4-F-iPr-norpentedrone4-FnPrHiPr
4Cl-NtB-pentedrone structure.png 3-CBV3-ClnPrHtBu
4-methylhexedrone structure.png 4-methylhexedrone4-MenBuHMe
4-methyl-N-ethylhexedrone structure.png MEH4-MenBuHEt
3F-NEH structure.png 3F-NEH 3-FnBuHEt
4-fluorohexedrone structure.png 4-F-hexedrone4-FnBuHMe
4-fluorooctedrone structure.png 4-F-octedrone4-FhexylHMe
Alpha-phenylmephedrone structure.png α-phenylmephedrone4-MephenylHMe
Bk-EPE structure.png βk-Ephenidine HphenylHEt22312-16-9
Bk-methamnetamine.svg BMAPN β-naphthyl instead of phenylMeHMe
Thiothinone.svg βk-Methiopropamine thiophen-2-yl instead of phenylMeHMe24065-17-6
5ClbkMPA structure.png 5-Cl-bk-MPA 5-chlorothiophen-2-yl instead of phenylMeHMe
Bk-5-MAPB structure.png βk-5-MAPB benzofuran-5-yl instead of phenylMeHMe
Bk-6-MAPB structure.png βk-6-MAPBbenzofuran-6-yl instead of phenylMeHMe
Bk-5-IT structure.png βk-5-ITindol-5-yl instead of phenylMeHH1369231-36-6
BK-5F-NM-AMT structure.png βk-5F-NM-AMT [77] 5-fluoroindol-3-yl instead of phenylMeHMe
Phthalprop.svg α-Phthalimidopropiophenone HMephthalimido19437-20-8
PPPO structure.png PPPOHMepiperidinyl
PPBO structure.png PPBOHEtpiperidinyl92728-82-0
FPPVO structure.png FPPVO4-FnPrpiperidinyl
3,4-Pr-PipVP structure.png 3,4-Pr-PipVP 3,4-trimethylenenPrpiperidinyl
MDPV-azepane structure.png MDPV-azepane3,4-methylenedioxynPr azepane
Caccure907 structure.png Caccure 9074-SCH3α,α-di-Memorpholinyl
A-PPP.svg α-PPP HMepyrrolidinyl19134-50-0
A-PBP.svg α-PBP HEtpyrrolidinyl13415-54-8
Alpha-Pyrrolidinopentiophenone.svg α-PVP (O-2387)HnPrpyrrolidinyl14530-33-7
A-PHP.svg α-PHP H nBu pyrrolidinyl13415-86-6
Alpha-PHiP structure.png α-PHiP HiBupyrrolidinyl
Alpha-Pyrrolidinoheptaphenone.svg α-PEP (α-PHPP)H nPe pyrrolidinyl13415-83-3
Alpha-POP structure.png α-POPH hexyl pyrrolidinyl
Alpha-PNP structure.png α-PNPH heptyl pyrrolidinyl
Diphenylpyrrolidinylethanone structure.png DPPE (Alpha-D2PV)Hphenylpyrrolidinyl27590-61-0
Alpha-PcPeP structure.png α-PcPePH cyclopentyl pyrrolidinyl
Alpha-PCYP structure.png α-PCYP H cyclohexyl pyrrolidinyl1803168-11-7
2-Me-PPP structure.png 2-MePPP2-MeMepyrrolidinyl2092429-83-7
3-Me-PPP structure.png 3-MePPP3-MeMepyrrolidinyl1214940-01-8
PMPPP.svg 4-MePPP 4-MeMepyrrolidinyl1313393-58-6
3MeO-PPP structure.png 3-MeO-PPP3-MeOMepyrrolidinyl
MOPPP SVG.svg MOPPP 4-MeOMepyrrolidinyl478243-09-3
3-F-PPP structure.png 3-F-PPP3-FMepyrrolidinyl1214939-99-7
4-F-PPP structure.png FPPP4-FMepyrrolidinyl28117-76-2
4-Cl-PPP structure.png Cl-PPP4-ClMepyrrolidinyl93307-24-5
3-Br-PPP structure.png 3-Br-PPP3-BrMepyrrolidinyl
4Br-PPP structure.png Br-PPP4-BrMepyrrolidinyl
2,3-DMPPP structure.png 2,3-DMPPP2,3-dimethylMepyrrolidinyl
2,4-DMPPP structure.png 2,4-DMPPP2,4-dimethylMepyrrolidinyl
3,4-DMPPP structure.png 3,4-DMPPP3,4-dimethylMepyrrolidinyl
3-Me-PBP structure.png 3-MPBP3-MeEtpyrrolidinyl1373918-60-5
3-F-PBP structure.png 3-F-PBP3-FEtpyrrolidinyl1373918-59-2
MPBP.svg MPBP 4-MeEtpyrrolidinyl732180-91-5
4-F-PBP structure.png FPBP4-FEtpyrrolidinyl1373918-67-2
4-Et-PBP structure.png EPBP4-EtEtpyrrolidinyl
4-MeO-PBP structure.png MOPBP4-MeOEtpyrrolidinyl
MMOPBP structure.png MMOPBP3-Me-4-MeOEtpyrrolidinyl
O-2384 structure.png O-23843,4-dichloroEtpyrrolidinyl850352-65-7
2Me-PVP structure.png 2-Me-PVP 2-MenPrpyrrolidinyl850352-54-4
3Me-PVP structure.png 3-Me-PVP 3-MenPrpyrrolidinyl13415-85-5
Pyrovalerone.svg Pyrovalerone (O-2371)4-MenPrpyrrolidinyl3563-49-3
4-Et-PVP structure.png 4-Et-PVP 4-EtnPrpyrrolidinyl
3-F-PVP structure.png 3F-PVP 3-FnPrpyrrolidinyl2725852-55-9
FPVP.svg FPVP 4-FnPrpyrrolidinyl850352-31-7
2Cl-PVP structure.png 2-Cl-PVP2-ClnPrpyrrolidinyl
3Cl-PVP structure.png 3-Cl-PVP3-ClnPrpyrrolidinyl
4-Cl-PVP structure.png 4-Cl-PVP 4-ClnPrpyrrolidinyl5537-17-7
3-Br-PVP structure.png 3-Br-PVP3-BrnPrpyrrolidinyl
4-Br-PVP structure.png 4-Br-PVP4-BrnPrpyrrolidinyl
MOPVP.svg MOPVP 4-MeOnPrpyrrolidinyl5537-19-9
DMPVP.svg DMOPVP 3,4-dimethoxynPrpyrrolidinyl850442-84-1
3,4-DMPVP structure.png DMPVP3,4-dimethylnPrpyrrolidinyl
O-2390 structure.png O-2390 3,4-dichloronPrpyrrolidinyl850352-61-3
MFPVP structure.png MFPVP 3-methyl-4-fluoronPrpyrrolidinyl
MPHP.svg MPHP 4-MenBupyrrolidinyl34138-58-4
3F-PHP structure.png 3F-PHP 3-FnBupyrrolidinyl
4-F-PHP structure.png 4F-PHP 4-FnBupyrrolidinyl2230706-09-7
4-Cl-PHP structure.png 4-Cl-PHP 4-ClnBupyrrolidinyl2748592-29-0
DMOPHP structure.png DMOPHP3,4-dimethoxynBupyrrolidinyl
MFPHP structure.png MFPHP3-Me-4-FnBupyrrolidinyl
3-F-PiHP structure.png 3F-PiHP 3-FiBupyrrolidinyl
4-F-PiHP structure.png 4F-PiHP4-FiBupyrrolidinyl
O-2494 structure.png O-23944-Me iBu pyrrolidinyl850352-51-1
4-Me-PEP structure.png MPEP4-Me pentyl pyrrolidinyl
4-F-PEP structure.png 4F-PV84-Fpentylpyrrolidinyl
4-MeO-PEP structure.png 4-MeO-PV84-MeOpentylpyrrolidinyl
MFPEP structure.png MFPEP3-Me-4-Fpentylpyrrolidinyl
MCPEP structure.png MCPEP3-Me-4-Clpentylpyrrolidinyl
FPOP.svg 4F-PV9 4-F hexyl pyrrolidinyl
4-MeO-POP structure.png 4-MeO-PV94-MeOhexylpyrrolidinyl
Alpha-phenylpyrovalerone structure.png α-Phenylpyrovalerone4-Me phenyl pyrrolidinyl
MDPPP.svg MDPPP 3,4-methylenedioxyMepyrrolidinyl783241-66-7
MDMPP structure.png MDMPP3,4-methylenedioxyα,α-di-Mepyrrolidinyl
3',4'-Methylenedioxy-a-pyrrolidinobutiophenone.svg MDPBP 3,4-methylenedioxyEtpyrrolidinyl784985-33-7
MDPV.svg MDPV 3,4-methylenedioxynPrpyrrolidinyl687603-66-3
2,3-MDPV structure.png 2,3-MDPV2,3-methylenedioxynPrpyrrolidinyl
5-Me-MDPV structure.png 5-Me-MDPV3,4-methylenedioxy-5-MenPrpyrrolidinyl
6-Me-MDPV structure.png 6-Me-MDPV2-Me-4,5-methylenedioxynPrpyrrolidinyl
6-MeO-MDPV structure.png 6-MeO-MDPV2-MeO-4,5-methylenedioxynPrpyrrolidinyl
4-MeO-5-Br-2,3-MDPV structure.png Br-MeO-MDPV2,3-methylenedioxy-4-MeO-5-BrnPrpyrrolidinyl
MDPiVP structure.png MDPiVP3,4-methylenedioxyiPrpyrrolidinyl
MDPHP.svg MDPHP 3,4-methylenedioxynBupyrrolidinyl776994-64-0
MDPHiP structure.png MDPHiP3,4-methylenedioxyiBupyrrolidinyl
MDPEP structure.png MDPEP (MD-PV8)3,4-methylenedioxypentylpyrrolidinyl24646-39-7
MDPOP structure.png MDPOP (MD-PV9)3,4-methylenedioxyhexylpyrrolidinyl24646-40-0
3,4-EtPV structure.png 3,4-EtPV3,4-dimethylenenPrpyrrolidinyl
5-PPDI structure.png 5-PPDi3,4-trimethyleneEtpyrrolidinyl
5-BPDI structure.png Indanyl-α-PVP3,4-trimethylenenPrpyrrolidinyl2748590-83-0
5-HPDI structure.png 5-BPDi 3,4-trimethylenenBupyrrolidinyl
Indapyrophenidone.svg IPPV 3,4-trimethylenephenylpyrrolidinyl
TH-PBP structure.png TH-PBP3,4-tetramethyleneEtpyrrolidinyl
TH-PVP structure.png TH-PVP 3,4-tetramethylenenPrpyrrolidinyl2304915-07-7
TH-PHP structure.png TH-PHP3,4-tetramethylenenBupyrrolidinyl
5-DBFPV.svg 5-DBFPV 2,3-dihydrobenzofuran-5-yl instead of PhnPrpyrrolidinyl1620807-94-4
3-BF-PVP structure.png 3-BF-PVPbenzofuran-3-yl instead of PhnPrpyrrolidinyl
Naphyrone.svg Naphyrone (O-2482)β-naphthyl instead of phenylnPrpyrrolidinyl850352-53-3
Alpha-naphyrone structure.png α-Naphyroneα-naphthyl instead of phenylnPrpyrrolidinyl
Alpha-PPT structure.png α-PPTthiophen-2-yl instead of phenylMepyrrolidinyl
Alpha-PBT structure.png α-PBTthiophen-2-yl instead of phenylEtpyrrolidinyl
A-PVT.svg α-PVT thiophen-2-yl instead of phenylnPrpyrrolidinyl1400742-66-6

Legality

On 2 April 2010, the Advisory Council on the Misuse of Drugs in the UK announced that a broad structure-based ban of this entire class of compounds would be instituted, following extensive publicity around grey-market sales and recreational use of mephedrone, a common member of the family. This ban covers compounds with the aforementioned general structure, with 28 compounds specifically named. [78]

"Any compound (not being bupropion or a substance for the time being specified in paragraph 2.2) structurally derived from 2-amino-1-phenyl-1-propanone by modification in any of the following ways, that is to say,

(i) by substitution in the phenyl ring to any extent with alkyl, alkoxy, alkylenedioxy, haloalkyl or halide substituents, whether or not further substituted in the phenyl ring by one or more other univalent substituents;

(ii) by substitution at the 3-position with an alkyl substituent;

(iii) by substitution at the nitrogen atom with alkyl or dialkyl groups, or by inclusion of the nitrogen atom in a cyclic structure."

ACMD, 2 April 2010

This text was added as an amendment to the Misuse of Drugs Act 1971, to come into force on 16 April 2010. [79] Note that four of the above compounds (cathinone, methcathinone, diethylpropion and pyrovalerone) were already illegal in the UK at the time the ACMD report was issued. Two compounds were specifically excluded from the ban, these being bupropion because of its common use in medicine and relative lack of abuse potential, and naphyrone because its structure falls outside the generic definition and not enough evidence was yet available to justify a ban.

Naphyrone analogues were subsequently banned in July 2010 following a further review by the ACMD, [80] [81] along with a further broad based structure ban even more expansive than the last. [82] [83]

"Any compound structurally derived from 2–aminopropan–1–one by substitution at the 1-position with any monocyclic, or fused-polycyclic ring system (not being a phenyl ring or alkylenedioxyphenyl ring system), whether or not the compound is

further modified in any of the following ways, that is to say—

(i) by substitution in the ring system to any extent with alkyl, alkoxy, haloalkyl or halide substituents, whether or not further substituted in the ring system by one or more other univalent substituents;

(ii) by substitution at the 3–position with an alkyl substituent;

(iii) by substitution at the 2-amino nitrogen atom with alkyl or dialkyl groups, or

by inclusion of the 2-amino nitrogen atom in a cyclic structure".

Home Office, 13 July 2010.
General chemical structure of substituted naphyrones, with R1-R3 defined in text Naphyrone general.png
General chemical structure of substituted naphyrones, with R1-R3 defined in text

The substitutions in the general structure for naphyrone analogues subject to the ban may be described as follows:

More new derivatives have however continued to appear, with the UK reporting more novel cathinone derivatives detected in 2010 than any other country in Europe, with most of them first identified after the generic ban had gone into effect and thus already being illegal despite never having been previously reported. [84]

In the United States, substituted cathinones are the psychoactive ingredients in "bath salts" which as of July 2011 were banned by at least 28 states, but not by the federal government. [85]

See also

Related Research Articles

<span class="mw-page-title-main">Methcathinone</span> Psychoactive stimulant

Methcathinone is a monoamine alkaloid and psychoactive stimulant, a substituted cathinone. It is used as a recreational drug due to its potent stimulant and euphoric effects and is considered to be addictive, with both physical and psychological withdrawal occurring if its use is discontinued after prolonged or high-dosage administration. It is usually snorted, but can be smoked, injected, or taken orally.

<span class="mw-page-title-main">Cathine</span> Chemical compound

Cathine, also known as D-norpseudoephedrine or as (+)-norpseudoephedrine, is a psychoactive drug of the phenethylamine and amphetamine groups which acts as a stimulant. Along with cathinone, it is found naturally in Catha edulis (khat), and contributes to the overall effects of the plant. Cathine has approximately 7 to 10% of the potency of amphetamine.

<i>para</i>-Methoxymethamphetamine Stimulant and psychedelic designer drug

para-Methoxymethamphetamine (PMMA), also known as 4-methoxy-N-methylamphetamine (4-MMA), is a serotonergic drug of the amphetamine family related to para-methoxyamphetamine (PMA). It is the 4-methoxy analogue of methamphetamine. Little is known about the pharmacological properties, metabolism, and toxicity of PMMA; because of its structural similarity to PMA, which has known toxicity in humans, it is thought to have considerable potential to cause harmful side effects or death in overdose. In the early 2010s, a number of deaths in users of the drug MDMA were linked to misrepresented tablets and capsules of PMMA.

<span class="mw-page-title-main">Etilamfetamine</span> Chemical compound

Etilamfetamine, also known as N-ethylamphetamine and formerly sold under the brand names Apetinil and Adiparthrol, is a stimulant drug of the amphetamine family. It was invented in the early 20th century and was subsequently used as an anorectic or appetite suppressant in the 1950s, but was not as commonly used as other amphetamines such as amphetamine, methamphetamine, and benzphetamine, and was largely discontinued once newer drugs such as phenmetrazine were introduced.

<span class="mw-page-title-main">Propylamphetamine</span> Chemical compound

Propylamphetamine is a psychostimulant of the amphetamine family which was never marketed. It was first developed in the 1970s, mainly for research into the metabolism of, and as a comparison tool to, other amphetamines.

<span class="mw-page-title-main">Naphthylaminopropane</span> Chemical compound

Naphthylaminopropane, also known as naphthylisopropylamine (NIPA), is an experimental drug of the amphetamine and naphthylaminopropane families that was under investigation for the treatment of alcohol and stimulant addiction.

<span class="mw-page-title-main">Norfenfluramine</span> Never-marketed drug of the amphetamine family

Norfenfluramine, or 3-trifluoromethylamphetamine, is a never-marketed drug of the amphetamine family and a major active metabolite of the appetite suppressants fenfluramine and benfluorex. The compound is a racemic mixture of two enantiomers with differing activities, dexnorfenfluramine and levonorfenfluramine.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters. The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; MRAs can induce the release of one or more of these neurotransmitters.

<span class="mw-page-title-main">Serotonin–dopamine releasing agent</span> Drug that releases serotonin and dopamine in the brain

A serotonin–dopamine releasing agent (SDRA) is a type of drug which induces the release of serotonin and dopamine in the body and/or brain.

<span class="mw-page-title-main">4-Methylamphetamine</span> Stimulant and anorectic drug of the amphetamine class

4-Methylamphetamine (4-MA), also known by the former proposed brand name Aptrol, is a stimulant and anorectic drug of the amphetamine family. It is structurally related to mephedrone (4-methylmethcathinone).

<span class="mw-page-title-main">4-Methylmethamphetamine</span> Stimulant and entactogen drug of the amphetamine class

4-Methylmethamphetamine (4-MMA), also known as mephedrine, is a putative stimulant and entactogen drug of the amphetamine family. It acts as a serotonin–norepinephrine–dopamine releasing agent (SNDRA). The drug is the β-deketo analogue of mephedrone and the N-methyl analogue of 4-methylamphetamine (4-MA).

<span class="mw-page-title-main">Methylenedioxycathinone</span> Chemical compound

3,4-Methylenedioxycathinone, also known as β-keto-3,4-methylenedioxyamphetamine (βk-MDA), is an entactogen and stimulant drug of the phenethylamine, amphetamine, and cathinone families. It is the β-keto analogue of MDA.

<span class="mw-page-title-main">4-Methylcathinone</span> Stimulant designer drug

4-Methylcathinone (4-MC), also known as normephedrone is a stimulant drug of the cathinone group. It is an active metabolite of the better known drug mephedrone.

<span class="mw-page-title-main">Methamnetamine</span> Chemical compound

Methamnetamine is a triple monoamine releasing agent of the amphetamine and naphthylaminopropane families. It is the N-methyl analog of the non-neurotoxic experimental drug naphthylaminopropane and the naphthalene analog of methamphetamine. It has been sold online as a designer drug.

<span class="mw-page-title-main">2-Naphthylmethcathinone</span> Substituted cathinone stimulant drug

2-Naphthylmethcathinone (BMAPN), also known as βk-methamnetamine, is a stimulant drug of the cathinone and naphthylaminopropane families. It inhibits dopamine reuptake and has rewarding and reinforcing properties in animal studies. It is banned under drug analogue legislation in a number of jurisdictions. The drug was at one point marketed under the name NRG-3, although only a minority of samples of substances sold under this name have been found to actually contain BMAPN, with most such samples containing mixtures of other cathinone derivatives.

<span class="mw-page-title-main">Butylamphetamine</span> Amphetamine derivative and stimulant

Butylamphetamine is a psychostimulant of the substituted amphetamine family which was never marketed.

<span class="mw-page-title-main">Ethylnaphthylaminopropane</span> Pharmaceutical compound

Ethylnaphthylaminopropane is a monoamine releasing agent (MRA) of the amphetamine and naphthylaminopropane families that is related to naphthylaminopropane and methamnetamine. It acts specifically as a serotonin–norepinephrine–dopamine releasing agent (SNDRA). However, ENAP is unusual in being a partial releaser of serotonin and dopamine and a full releaser of norepinephrine.

<span class="mw-page-title-main">Naphthylmetrazine</span> Pharmaceutical compound

Naphthylmetrazine, also known as 3-methyl-2-(2′-naphthyl)morpholine, is a monoamine releasing agent (MRA) and monoamine reuptake inhibitor (MRI) of the phenylmorpholine and naphthylaminopropane families related to phenmetrazine. It is a analogue of phenmetrazine in which the phenyl ring has been replaced with a naphthalene ring.

<span class="mw-page-title-main">Substituted naphthylethylamine</span>

The substituted naphthylethylamines are a class of chemical compounds based on naphthalene. Many naphthylethylamines are naphthylaminopropanes due to the presence of a methyl group at the alpha carbon of the alkyl chain. The naphthylethylamines are derivatives of the phenethylamines, while the naphthylaminopropanes are derivatives of the amphetamines.

<span class="mw-page-title-main">Naphthylmorpholine</span> Pharmaceutical compound

Naphthylmorpholine, also known as 2-(2′-naphthyl)morpholine, is a monoamine releasing agent of the arylmorpholine and naphthylethylamine families. It is the derivative of 2-phenylmorpholine with a 2-naphthalene ring instead of a phenyl ring. Naphthylmorpholine is a close analogue of naphthylmetrazine, but lacks naphthylmetrazine's methyl group at the 3 position of the morpholine ring.

References

  1. Meltzer PC, Butler D, Deschamps JR, Madras BK (February 2006). "1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors". Journal of Medicinal Chemistry. 49 (4): 1420–32. doi:10.1021/jm050797a. PMC   2602954 . PMID   16480278.
  2. Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D (2014). "Emerging drugs of abuse: current perspectives on substituted cathinones". Substance Abuse and Rehabilitation. 5: 37–52. doi: 10.2147/SAR.S37257 . PMC   4043811 . PMID   24966713.
  3. Simmons SJ, Leyrer-Jackson JM, Oliver CF, Hicks C, Muschamp JW, Rawls SM, Olive MF (October 2018). "DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants". ACS Chemical Neuroscience. 9 (10): 2379–2394. doi:10.1021/acschemneuro.8b00147. PMC   6197900 . PMID   29714473.
  4. Beck O, Bäckberg M, Signell P, Helander A (April 2018). "Intoxications in the STRIDA project involving a panorama of psychostimulant pyrovalerone derivatives, MDPV copycats". Clinical Toxicology. 56 (4): 256–263. doi: 10.1080/15563650.2017.1370097 . PMID   28895757. S2CID   3401681.
  5. Majchrzak M, Celiński R, Kuś P, Kowalska T, Sajewicz M (2018). "The newest cathinone derivatives as designer drugs: an analytical and toxicological review". Forensic Toxicology. 36 (1): 33–50. doi:10.1007/s11419-017-0385-6. PMC   5754390 . PMID   29367861.
  6. Colzato LS, Ruiz MJ, van den Wildenberg WP, Hommel B (2011). "Khat use is associated with impaired working memory and cognitive flexibility". PLOS ONE. 6 (6): e20602. Bibcode:2011PLoSO...620602C. doi: 10.1371/journal.pone.0020602 . PMC   3115937 . PMID   21698275.
  7. 1 2 3 Rothman RB, Baumann MH (2003). "Monoamine transporters and psychostimulant drugs". Eur. J. Pharmacol. 479 (1–3): 23–40. doi:10.1016/j.ejphar.2003.08.054. PMID   14612135.
  8. 1 2 3 Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates". Curr Top Med Chem. 6 (17): 1845–1859. doi:10.2174/156802606778249766. PMID   17017961.
  9. 1 2 3 Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (February 2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter". Drug and Alcohol Dependence. 147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005. PMC   4297708 . PMID   25548026.
  10. Rothman RB, Baumann MH (December 2005). "Targeted screening for biogenic amine transporters: potential applications for natural products". Life Sciences. 78 (5): 512–518. doi:10.1016/j.lfs.2005.09.001. PMID   16202429.
  11. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID   11071707.
  12. 1 2 3 Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (April 2012). "The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue". Neuropsychopharmacology. 37 (5): 1192–203. doi:10.1038/npp.2011.304. PMC   3306880 . PMID   22169943.
  13. 1 2 Kuropka P, Zawadzki M, Szpot P (May 2023). "A narrative review of the neuropharmacology of synthetic cathinones-Popular alternatives to classical drugs of abuse". Hum Psychopharmacol. 38 (3): e2866. doi:10.1002/hup.2866. PMID   36866677. Another feature that distinguishes [substituted cathinones (SCs)] from amphetamines is their negligible interaction with the trace amine associated receptor 1 (TAAR1). Activation of this receptor reduces the activity of dopaminergic neurones, thereby reducing psychostimulatory effects and addictive potential (Miller, 2011; Simmler et al., 2016). Amphetamines are potent agonists of this receptor, making them likely to self‐inhibit their stimulating effects. In contrast, SCs show negligible activity towards TAAR1 (Kolaczynska et al., 2021; Rickli et al., 2015; Simmler et al., 2014, 2016). [...] The lack of self‐regulation by TAAR1 may partly explain the higher addictive potential of SCs compared to amphetamines (Miller, 2011; Simmler et al., 2013).
  14. 1 2 Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (April 2016). "In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1". J Pharmacol Exp Ther. 357 (1): 134–144. doi:10.1124/jpet.115.229765. PMID   26791601.
  15. Simmler LD, Rickli A, Hoener MC, Liechti ME (April 2014). "Monoamine transporter and receptor interaction profiles of a new series of designer cathinones". Neuropharmacology. 79: 152–160. doi:10.1016/j.neuropharm.2013.11.008. PMID   24275046.
  16. Pottie E, Cannaert A, Stove CP (October 2020). "In vitro structure-activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor". Arch Toxicol. 94 (10): 3449–3460. doi:10.1007/s00204-020-02836-w. hdl: 1854/LU-8687071 . PMID   32627074.
  17. 1 2 3 4 5 Blough B (July 2008). "Dopamine-releasing agents" (PDF). In Trudell ML, Izenwasser S (eds.). Dopamine Transporters: Chemistry, Biology and Pharmacology. Hoboken [NJ]: Wiley. pp. 305–320. ISBN   978-0-470-11790-3. OCLC   181862653. OL   18589888W.
  18. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Walther D, Shalabi AR, Baumann MH, Glennon RA (January 2019). "Systematic Structure-Activity Studies on Selected 2-, 3-, and 4-Monosubstituted Synthetic Methcathinone Analogs as Monoamine Transporter Releasing Agents". ACS Chem Neurosci. 10 (1): 740–745. doi:10.1021/acschemneuro.8b00524. PMC   8269283 . PMID   30354055.
  19. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Blough BE, Decker AM, Landavazo A, Namjoshi OA, Partilla JS, Baumann MH, Rothman RB (March 2019). "The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes". Psychopharmacology. 236 (3): 915–924. doi:10.1007/s00213-018-5063-9. PMC   6475490 . PMID   30341459.
  20. 1 2 3 Cozzi NV, Brandt SD, Daley PF, Partilla JS, Rothman RB, Tulzer A, Sitte HH, Baumann MH (January 2013). "Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs". Eur J Pharmacol. 699 (1–3): 180–187. doi:10.1016/j.ejphar.2012.11.008. PMC   3656655 . PMID   23178523.
  21. 1 2 3 Cozzi, Nicholas V.; Daley, Paul F.; Evans, Darin L.; Partilla, John S.; Rothman, Richard B.; Ruoho, Arnold E.; Baumann, Michael H. (2011). "Trifluoromethyl ring-substituted methcathinone analogs: activity at monoamine uptake transporters". The FASEB Journal. 25 (S1). doi: 10.1096/fasebj.25.1_supplement.1083.1 . ISSN   0892-6638.
  22. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Blough BE, Landavazo A, Partilla JS, Baumann MH, Decker AM, Page KM, Rothman RB (June 2014). "Hybrid dopamine uptake blocker-serotonin releaser ligands: a new twist on transporter-focused therapeutics". ACS Med Chem Lett. 5 (6): 623–627. doi:10.1021/ml500113s. PMC   4060932 . PMID   24944732.
  23. "Norfenfluramine to treat dravet syndrome". Google Patents. 9 March 2023. Retrieved 7 December 2024.
  24. 1 2 3 4 5 6 7 8 9 10 11 Shalabi, Abdelrahman R. (14 December 2017). Structure-Activity Relationship Studies of Bupropion and Related 3-Substituted Methcathinone Analogues at Monoamine Transporters. VCU Scholars Compass (Thesis). doi:10.25772/M4E1-3549 . Retrieved 24 November 2024.
  25. 1 2 3 Shalabi AR, Walther D, Baumann MH, Glennon RA (June 2017). "Deconstructed Analogues of Bupropion Reveal Structural Requirements for Transporter Inhibition versus Substrate-Induced Neurotransmitter Release". ACS Chem Neurosci. 8 (6): 1397–1403. doi:10.1021/acschemneuro.7b00055. PMC   7261150 . PMID   28220701.
  26. Carroll FI, Blough BE, Mascarella SW, Navarro HA, Lukas RJ, Damaj MI (2014). "Bupropion and bupropion analogs as treatments for CNS disorders". Emerging Targets & Therapeutics in the Treatment of Psychostimulant Abuse. Adv Pharmacol. Vol. 69. pp. 177–216. doi:10.1016/B978-0-12-420118-7.00005-6. ISBN   978-0-12-420118-7. PMID   24484978.
  27. Kohut SJ, Fivel PA, Blough BE, Rothman RB, Mello NK (October 2013). "Effects of methcathinone and 3-Cl-methcathinone (PAL-434) in cocaine discrimination or self-administration in rhesus monkeys". Int J Neuropsychopharmacol. 16 (9): 1985–1998. doi:10.1017/S146114571300059X. PMID   23768644.
  28. 1 2 3 Yadav, Barkha J (16 July 2019). Understanding Structure–Activity Relationship of Synthetic Cathinones (Bath Salts) Utilizing Methylphenidate. VCU Scholars Compass (Thesis). doi:10.25772/MJQW-8C64 . Retrieved 24 November 2024.
  29. "Specialized combinations for mental disorders or mental enhancement". Google Patents. 7 June 2024. Retrieved 4 November 2024.
  30. 1 2 3 4 5 Baumann MH, Walters HM, Niello M, Sitte HH (2018). "Neuropharmacology of Synthetic Cathinones". Handb Exp Pharmacol. Handbook of Experimental Pharmacology. 252: 113–142. doi:10.1007/164_2018_178. ISBN   978-3-030-10560-0. PMC   7257813 . PMID   30406443.
  31. 1 2 3 4 5 6 7 8 Sakloth, Farhana (11 December 2015). Psychoactive synthetic cathinones (or 'bath salts'): Investigation of mechanisms of action. VCU Scholars Compass (Thesis). doi:10.25772/AY8R-PW77 . Retrieved 24 November 2024.
  32. 1 2 3 4 5 6 Bonano JS, Banks ML, Kolanos R, Sakloth F, Barnier ML, Glennon RA, Cozzi NV, Partilla JS, Baumann MH, Negus SS (May 2015). "Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues". Br J Pharmacol. 172 (10): 2433–2444. doi:10.1111/bph.13030. PMC   4409897 . PMID   25438806.
  33. 1 2 3 4 5 6 Fitzgerald LR, Gannon BM, Walther D, Landavazo A, Hiranita T, Blough BE, Baumann MH, Fantegrossi WE (March 2024). "Structure-activity relationships for locomotor stimulant effects and monoamine transporter interactions of substituted amphetamines and cathinones". Neuropharmacology. 245: 109827. doi:10.1016/j.neuropharm.2023.109827. PMC  10842458. PMID   38154512.
  34. Nicole, Lauren (2022). "In vivo Structure-Activity Relationships of Substituted Amphetamines and Substituted Cathinones". ProQuest. Retrieved 5 December 2024. FIGURE 2-6: Release: Effects of the specified test drug on monoamine release by DAT (red circles), NET (blue squares), and SERT (black traingles) in rat brain tissue. [...] EC50 values determined for the drug indicated within the panel. [...]
  35. 1 2 3 4 5 6 7 8 Glennon RA, Dukat M (2017). "Structure-Activity Relationships of Synthetic Cathinones". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 32: 19–47. doi:10.1007/7854_2016_41. ISBN   978-3-319-52442-9. PMC   5818155 . PMID   27830576.
  36. Glennon RA (April 2017). "The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The "Phenylalkylaminome" with a Focus on Selected Drugs of Abuse". J Med Chem. 60 (7): 2605–2628. doi:10.1021/acs.jmedchem.7b00085. PMC   5824997 . PMID   28244748. Table 5. Action of MDMA, MDA, and PMMA as Releasing Agents at the Serotonin (SERT), Dopamine (DAT), and Norepinephrine (NET) Transporters18,59,60 [...] a Data, although from different publications, were obtained from the same laboratory.
  37. Davies RA, Baird TR, Nguyen VT, Ruiz B, Sakloth F, Eltit JM, Negus SS, Glennon RA (June 2020). "Investigation of the Optical Isomers of Methcathinone, and Two Achiral Analogs, at Monoamine Transporters and in Intracranial Self-Stimulation Studies in Rats". ACS Chem Neurosci. 11 (12): 1762–1769. doi:10.1021/acschemneuro.9b00617. PMC   10019599 . PMID   32356961.
  38. Nguyen, Vy (2019). "Analyzing Interactions Between Methcathinone Analogs and the Human Monoamine Transporters". VCU Theses and Dissertations. doi:10.25772/T1DW-MG60.
  39. 1 2 3 4 Davies, Rachel A (10 July 2019). Structure-Activity Relationship Studies of Synthetic Cathinones and Related Agents. VCU Scholars Compass (Thesis). doi:10.25772/TZSA-0396 . Retrieved 24 November 2024.
  40. 1 2 Yu H, Rothman RB, Dersch CM, Partilla JS, Rice KC (December 2000). "Uptake and release effects of diethylpropion and its metabolites with biogenic amine transporters". Bioorganic & Medicinal Chemistry. 8 (12): 2689–2692. doi:10.1016/s0968-0896(00)00210-8. PMID   11131159.
  41. Partilla JS, Dersch CM, Baumann MH, Carroll FI, Rothman RB (1999). "Profiling CNS Stimulants with a High-Throughput Assay for Biogenic Amine Transporter Substractes". Problems of Drug Dependence 1999: Proceedings of the 61st Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc (PDF). NIDA Res Monogr. Vol. 180. pp. 1–476 (252). PMID   11680410. Diethylpropion, which is self-administered, was a weak DA uptake inhibitor (Ki = 15 µM) and NE uptake inhibitor (Ki = 18.1 µM) and essentially inactive in the other assays.
  42. 1 2 Saha K, Li Y, Holy M, Lehner KR, Bukhari MO, Partilla JS, Sandtner W, Sitte HH, Baumann MH (March 2019). "The synthetic cathinones, butylone and pentylone, are stimulants that act as dopamine transporter blockers but 5-HT transporter substrates". Psychopharmacology (Berl). 236 (3): 953–962. doi:10.1007/s00213-018-5075-5. PMC   6476708 . PMID   30345459.
  43. Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (June 2013). "Substituted methcathinones differ in transporter and receptor interactions". Biochem Pharmacol. 85 (12): 1803–1815. doi:10.1016/j.bcp.2013.04.004. PMC   3692398 . PMID   23583454.
  44. Heal DJ, Smith SL, Gosden J, Nutt DJ (June 2013). "Amphetamine, past and present--a pharmacological and clinical perspective". Journal of Psychopharmacology. 27 (6): 479–496. doi:10.1177/0269881113482532. PMC   3666194 . PMID   23539642.
  45. 1 2 3 4 5 Hutsell BA, Baumann MH, Partilla JS, Banks ML, Vekariya R, Glennon RA, Negus SS (February 2016). "Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats". Eur Neuropsychopharmacol. 26 (2): 288–297. doi:10.1016/j.euroneuro.2015.12.010. PMC   5331761 . PMID   26738428.
  46. Rothman RB, Baumann MH (October 2003). "Monoamine transporters and psychostimulant drugs". European Journal of Pharmacology. 479 (1–3): 23–40. doi:10.1016/j.ejphar.2003.08.054. PMID   14612135.
  47. 1 2 3 4 Glatfelter GC, Walther D, Evans-Brown M, Baumann MH (April 2021). "Eutylone and Its Structural Isomers Interact with Monoamine Transporters and Induce Locomotor Stimulation". ACS Chem Neurosci. 12 (7): 1170–1177. doi:10.1021/acschemneuro.0c00797. PMC   9423000 . PMID   33689284.
  48. Del Bello F, Sakloth F, Partilla JS, Baumann MH, Glennon RA (September 2015). "Ethylenedioxy homologs of N-methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its corresponding cathinone analog methylenedioxymethcathinone: Interactions with transporters for serotonin, dopamine, and norepinephrine". Bioorg Med Chem. 23 (17): 5574–5579. doi:10.1016/j.bmc.2015.07.035. PMC   4562428 . PMID   26233799.
  49. 1 2 Costa JL, Cunha KF, Lanaro R, Cunha RL, Walther D, Baumann MH (March 2019). "Analytical quantification, intoxication case series, and pharmacological mechanism of action for N-ethylnorpentylone (N-ethylpentylone or ephylone)". Drug Test Anal. 11 (3): 461–471. doi:10.1002/dta.2502. PMC   7316160 . PMID   30207090.
  50. 1 2 3 4 Elmore JS, Dillon-Carter O, Partilla JS, Ellefsen KN, Concheiro M, Suzuki M, Rice KC, Huestis MA, Baumann MH (February 2017). "Pharmacokinetic Profiles and Pharmacodynamic Effects for Methylone and Its Metabolites in Rats". Neuropsychopharmacology. 42 (3): 649–660. doi:10.1038/npp.2016.213. PMC   5240186 . PMID   27658484.
  51. 1 2 Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (March 2013). "Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products". Neuropsychopharmacology. 38 (4): 552–562. doi:10.1038/npp.2012.204. PMC   3572453 . PMID   23072836.
  52. 1 2 Gregg RA, Baumann MH, Partilla JS, Bonano JS, Vouga A, Tallarida CS, Velvadapu V, Smith GR, Peet MM, Reitz AB, Negus SS, Rawls SM (February 2015). "Stereochemistry of mephedrone neuropharmacology: enantiomer-specific behavioural and neurochemical effects in rats". Br J Pharmacol. 172 (3): 883–894. doi:10.1111/bph.12951. PMC   4301696 . PMID   25255824.
  53. McLaughlin G, Morris N, Kavanagh PV, Power JD, Dowling G, Twamley B, O Brien J, Talbot B, Walther D, Partilla JS, Baumann MH, Brandt SD (March 2017). "Synthesis, characterization and monoamine transporter activity of the new psychoactive substance mexedrone and its N-methoxy positional isomer, N-methoxymephedrone". Drug Test Anal. 9 (3): 358–368. doi:10.1002/dta.2053. PMC   5336524 . PMID   27524685.
  54. Mayer FP, Wimmer L, Dillon-Carter O, Partilla JS, Burchardt NV, Mihovilovic MD, Baumann MH, Sitte HH (September 2016). "Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters". Br J Pharmacol. 173 (17): 2657–2668. doi:10.1111/bph.13547. PMC   4978154 . PMID   27391165.
  55. Europol 2008 Annual Report on the implementation of Council Decision 2005/387/JHA
  56. Europol 2009 Annual Report on the implementation of Council Decision 2005/387/JHA
  57. Europol 2010 Annual Report on the implementation of Council Decision 2005/387/JHA
  58. Europol 2011 Annual Report on the implementation of Council Decision 2005/387/JHA
  59. Europol 2012 Annual Report on the implementation of Council Decision 2005/387/JHA
  60. Europol 2013 Annual Report on the implementation of Council Decision 2005/387/JHA
  61. Europol 2014 Annual Report on the implementation of Council Decision 2005/387/JHA
  62. Europol 2015 Annual Report on the implementation of Council Decision 2005/387/JHA
  63. Europol 2016 Annual Report on the implementation of Council Decision 2005/387/JHA
  64. Europol 2017 Annual Report on the implementation of Council Decision 2005/387/JHA
  65. European Monitoring Center for Drugs and Drug Addiction (December 2020). New psychoactive substances: global markets, glocal threats and the COVID-19 pandemic. An update from the EU Early Warning System (PDF). Luxembourg: Publications Office of the European Union. doi:10.2810/921262. ISBN   9789294975584.
  66. Maurer HH, Kraemer T, Springer D, Staack RF (April 2004). "Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis". Therapeutic Drug Monitoring. 26 (2): 127–31. doi:10.1097/00007691-200404000-00007. PMID   15228152. S2CID   9255084.
  67. Davis S, Rands-Trevor K, Boyd S, Edirisinghe M (April 2012). "The characterisation of two halogenated cathinone analogues: 3,5-difluoromethcathinone and 3,5-dichloromethcathinone". Forensic Science International. 217 (1–3): 139–45. doi:10.1016/j.forsciint.2011.10.042. PMID   22088945.
  68. Liu C, Jia W, Li T, Hua Z, Qian Z (August 2017). "Identification and analytical characterization of nine synthetic cathinone derivatives N-ethylhexedrone, 4-Cl-pentedrone, 4-Cl-α-EAPP, propylone, N-ethylnorpentylone, 6-MeO-bk-MDMA, α-PiHP, 4-Cl-α-PHP, and 4-F-α-PHP". Drug Testing and Analysis. 9 (8): 1162–1171. doi:10.1002/dta.2136. PMID   27863142.
  69. Błażewicz A, Bednarek E, Popławska M, Olech N, Sitkowski J, Kozerski L (2019). "Identification and structural characterization of synthetic cathinones: N-propylcathinone, 2,4-dimethylmethcathinone, 2,4-dimethylethcathinone, 2,4-dimethyl-α-pyrrolidinopropiophenone, 4-bromo-α-pyrrolidinopropiophenone, 1-(2,3-dihydro-1H-inden-5-yl)-2-(pyrrolidin-1-yl)hexan-1-one and 2,4-dimethylisocathinone". Forensic Toxicol. 37 (2): 288–307. doi: 10.1007/s11419-018-00463-w . S2CID   59618061.
  70. Westphal F, Girreser U, Angerer V, Auwärter V (January 2016). "Analytische Daten neuer 2-aminosubstituierter Methylendioxyvalerophenonderivate". Toxichem Krimtech. 83 (1): 3–29.
  71. Majchrzak M, Celiński R, Kuś P, Kowalska T, Sajewicz M (2018). "The newest cathinone derivatives as designer drugs: an analytical and toxicological review". Forensic Toxicology. 36 (1): 33–50. doi:10.1007/s11419-017-0385-6. PMC   5754390 . PMID   29367861.
  72. Carlsson A, Sandgren V, Svensson S, Konradsson P, Dunne S, Josefsson M, Dahlén J (February 2018). "Prediction of designer drugs: Synthesis and spectroscopic analysis of synthetic cathinone analogs that may appear on the Swedish drug market". Drug Testing and Analysis. 10 (7): 1076–1098. doi:10.1002/dta.2366. PMID   29426062.
  73. Cheng WC, Wong WC (May 2019). "Forensic drug analysis of chloro-N,N-dimethylcathinone (CDC) and chloroethcathinone (CEC): Identification of 4-CDC and 4-CEC in drug seizures and differentiation from their ring-substituted positional isomers". Forensic Science International. 298: 268–277. doi:10.1016/j.forsciint.2019.03.002. PMID   30925345. S2CID   87589412.
  74. Lajtai A, Mayer M, Lakatos Á, Kuzma M, Miseta A (November 2020). "New psychoactive versus conventional stimulants - a ten-year review of casework in Hungary". Legal Medicine. 47: 101780. doi: 10.1016/j.legalmed.2020.101780 . PMID   32882537. S2CID   221496728.
  75. Jones NS, Comparin JH (2020). "Interpol review of controlled substances 2016-2019". Forensic Science International. Synergy. 2: 608–669. doi:10.1016/j.fsisyn.2020.01.019. PMC   7770462 . PMID   33385148.
  76. "Valtioneuvoston asetus kuluttajamarkkinoilta kielletyistä psykoaktiivisista aineista" [Government Decree on Psychoactive Substances Banned from the Consumer Market]. Finlex Data Bank (in Finnish).
  77. Baggott M. Advantageous Tryptamine Compositions For Mental Disorders or Enhancement. Patent WO 2022/061242
  78. Advisory Council on the Misuse of Drugs (UK). Consideration of the cathinones. 31 March 2010. Archived 22 September 2011 at the Wayback Machine Retrieved 2011-07-17.
  79. "The Misuse of Drugs (Amendment) (England, Wales and Scotland) Regulations 2010 No. 1144". Opsi.gov.uk. Retrieved 8 April 2010.
  80. "NRG-1 'legal high' drug is banned". BBC News. 12 July 2010. Retrieved 17 July 2010.
  81. "Advisory Council on the Misuse of Drugs Naphyrone Report (2010)". Home Office. 7 July 2010. Archived from the original on 17 July 2010. Retrieved 17 July 2010.
  82. "Explanatory Memorandum To The Misuse of Drugs (Amendment No. 2) (England, Wales and Scotland) Regulations 2010 No. 1799" (PDF). Opsi.gov.uk. Retrieved 18 July 2010.
  83. "The Misuse of Drugs (Amendment No. 2) (England, Wales and Scotland) Regulations 2010 No. 1799" (PDF). Opsi.gov.uk. Retrieved 18 July 2010.
  84. European Monitoring Centre on Drugs and Drug Addiction. EMCDDA–Europol 2010 Annual Report on the implementation of Council Decision 2005/387/JHA. Archived 14 March 2012 at the Wayback Machine Retrieved 2011-07-17.
  85. Goodnough A, Zezima K (16 July 2011). "An Alarming New Stimulant, Legal in Many States". The New York Times . Retrieved 17 July 2011.