Perphenazine

Last updated
Perphenazine
Perphenazine.svg
Clinical data
AHFS/Drugs.com Monograph
MedlinePlus a682165
Pregnancy
category
  • AU:C
Routes of
administration
Oral and IM
Drug class Typical antipsychotic
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 40%
Metabolism hepatic
Elimination half-life 8–12 (up to 20) hours
Identifiers
  • 2-[4-[3-(2-chloro-10H-phenothiazin-10-yl) propyl]piperazin-1-yl]ethanol
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.000.346 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C21H26ClN3OS
Molar mass 403.97 g·mol−1
3D model (JSmol)
  • Clc2cc1N(c3c(Sc1cc2)cccc3)CCCN4CCN(CCO)CC4
  • InChI=1S/C21H26ClN3OS/c22-17-6-7-21-19(16-17)25(18-4-1-2-5-20(18)27-21)9-3-8-23-10-12-24(13-11-23)14-15-26/h1-2,4-7,16,26H,3,8-15H2 Yes check.svgY
  • Key:RGCVKNLCSQQDEP-UHFFFAOYSA-N Yes check.svgY
   (verify)

Perphenazine is a typical antipsychotic drug. Chemically, it is classified as a piperazinyl phenothiazine. Originally marketed in the United States as Trilafon, it has been in clinical use for decades.

Contents

Perphenazine is roughly ten times as potent as chlorpromazine at the dopamine-2 (D2) receptor; [3] thus perphenazine is considered a medium-potency antipsychotic. [4] [5]

Medical uses

In low doses it is used to treat agitated depression (together with an antidepressant). Fixed combinations of perphenazine and the tricyclic antidepressant amitriptyline in different proportions of weight exist (see Etrafon below). When treating depression, perphenazine is discontinued as fast as the clinical situation allows.[ citation needed ] Perphenazine has no intrinsic antidepressive activity. Several studies show that the use of perphenazine with fluoxetine (Prozac) in patients with psychotic depression is most promising, although fluoxetine interferes with the metabolism of perphenazine, causing higher plasma levels of perphenazine and a longer half-life. In this combination the strong antiemetic action of perphenazine attenuates fluoxetine-induced nausea and vomiting (emesis), as well as the initial agitation caused by fluoxetine. Both actions can be helpful for many patients.

Perphenazine has been used in low doses as a 'normal' or 'minor' tranquilizer in patients with a known history of addiction to drugs or alcohol, a practice which is now strongly discouraged.[ citation needed ]

Perphenazine has sedating and anxiolytic properties, making the drug useful for the treatment of agitated psychotic patients.

A valuable off-label indication is the short-time treatment of hyperemesis gravidarum, in which pregnant women experience violent nausea and vomiting. This problem can become severe enough to endanger the pregnancy. As perphenazine has not been shown to be teratogenic and works very well, it is sometimes given orally in the smallest possible dose.

Effectiveness

Perphenazine is used to treat psychosis (e.g. in people with schizophrenia and the manic phases of bipolar disorder and OCD). Perphenazine effectively treats the positive symptoms of schizophrenia, such as hallucinations and delusions, but its effectiveness in treating the negative symptoms of schizophrenia, such as flattened affect and poverty of speech, is unclear. Earlier studies found the typical antipsychotics to be ineffective or poorly effective in the treatment of negative symptoms, [6] but two recent, large-scale studies found no difference between perphenazine and the atypical antipsychotics. [7] A 2015 systematic review compared perphenazine with other antipsychotic drugs:

Perphenazine compared with any antipsychotic drug for schizophrenia [8]
Summary
Although perphenazine has been used in randomized trials for more than 50 years, incomplete reporting and the variety of comparators used make it impossible to draw clear conclusions. All data for the main outcomes were of very low quality evidence. At best it can be said that perphenazine showed similar effects—including adverse events—as several of the other antipsychotic drugs. [8]

Side effects

As a member of the phenothiazine type of antipsychotics, perphenazine shares in general all allergic and toxic side-effects of chlorpromazine. A 2015 systematic review of the data on perphenazine conducted by the Cochrane Collaboration concluded that "there were no convincing differences between perphenazine and other antipsychotics" in the incidence of adverse effects. [8] Perphenazine causes early and late extrapyramidal side effects more often than placebo, and at a similar rate to other medium-potency antipsychotics [9] and the atypical antipsychotic risperidone. [10] [11]

When used for its strong antiemetic or antivertignosic effects in cases with associated brain injuries, it may obscure the clinical course and interferes with the diagnosis. High doses of perphenazine can cause temporary dyskinesia. As with other typical antipsychotics, permanent or lasting tardive dyskinesia is a risk.

Discontinuation

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. [12] Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. [13] Other symptoms may include restlessness, increased sweating, and trouble sleeping. [13] Less commonly there may be a feeling of the world spinning, numbness, or muscle pains. [13] Symptoms generally resolve after a short period of time. [13]

There is tentative evidence that discontinuation of antipsychotics can result in psychosis. [14] It may also result in reoccurrence of the condition that is being treated. [15] Rarely tardive dyskinesia can occur when the medication is stopped. [13]

Pharmacology

Pharmacodynamics

Perphenazine has the following binding profile towards cloned human receptors unless otherwise specified: [16] [17]

Molecular targetBinding affinity (Ki[nM]) for perphenazineBinding affinity (Ki[nM]) for dealkylperphenazineBinding affinity (Ki[nM]) for 7-hydroxyperphenazine
5-HT1A 421--
5-HT2A 5.65438
5-HT2C 132--
5-HT6 17--
5-HT7 23--
α1A 10--
α2A 810--
α2B 104.9--
α2C 85.2--
M1 20001303400
M3 1848--
D1 29.9 (RS)--
D2 0.765--
D2L receptor3.4854.1
D3 0.13--
D4 17--
D4.4 receptor140690620
H1 8--
σ 18.5 (RB)--


Acronyms:
RS — Rat striatum receptor.
RB — Rat brain receptor.

Pharmacokinetics

Perphenazine has an oral bioavailability of approximately 40% and a half-life of 8 to 12 hours (up to 20 hours), and is usually given in 2 or 3 divided doses each day. It is possible to give two-thirds of the daily dose at bedtime and one-third during breakfast to maximize hypnotic activity during the night and to minimize daytime sedation and hypotension without loss of therapeutic activity.

Pharmacokinetics of long-acting injectable antipsychotics
MedicationBrand nameClassVehicleDosageTmaxt1/2 singlet1/2 multiplelogPcRef
Aripiprazole lauroxil Aristada Atypical Water a441–1064 mg/4–8 weeks24–35 days ?54–57 days7.9–10.0
Aripiprazole monohydrate Abilify Maintena Atypical Water a300–400 mg/4 weeks7 days ?30–47 days4.9–5.2
Bromperidol decanoate Impromen Decanoas Typical Sesame oil 40–300 mg/4 weeks3–9 days ?21–25 days7.9 [18]
Clopentixol decanoate Sordinol Depot Typical Viscoleo b50–600 mg/1–4 weeks4–7 days ?19 days9.0 [19]
Flupentixol decanoate Depixol Typical Viscoleo b10–200 mg/2–4 weeks4–10 days8 days17 days7.2–9.2 [19] [20]
Fluphenazine decanoate Prolixin Decanoate Typical Sesame oil 12.5–100 mg/2–5 weeks1–2 days1–10 days14–100 days7.2–9.0 [21] [22] [23]
Fluphenazine enanthate Prolixin Enanthate Typical Sesame oil 12.5–100 mg/1–4 weeks2–3 days4 days ?6.4–7.4 [22]
Fluspirilene Imap, Redeptin Typical Water a2–12 mg/1 week1–8 days7 days ?5.2–5.8 [24]
Haloperidol decanoate Haldol Decanoate Typical Sesame oil 20–400 mg/2–4 weeks3–9 days18–21 days7.2–7.9 [25] [26]
Olanzapine pamoate Zyprexa Relprevv Atypical Water a150–405 mg/2–4 weeks7 days ?30 days
Oxyprothepin decanoate Meclopin Typical  ? ? ? ? ?8.5–8.7
Paliperidone palmitate Invega Sustenna Atypical Water a39–819 mg/4–12 weeks13–33 days25–139 days ?8.1–10.1
Perphenazine decanoateTrilafon Dekanoat Typical Sesame oil 50–200 mg/2–4 weeks ? ?27 days8.9
Perphenazine enanthate Trilafon Enanthate Typical Sesame oil 25–200 mg/2 weeks2–3 days ?4–7 days6.4–7.2 [27]
Pipotiazine palmitate Piportil Longum Typical Viscoleo b25–400 mg/4 weeks9–10 days ?14–21 days8.5–11.6 [20]
Pipotiazine undecylenate Piportil Medium Typical Sesame oil 100–200 mg/2 weeks ? ? ?8.4
Risperidone Risperdal Consta Atypical Microspheres 12.5–75 mg/2 weeks21 days ?3–6 days
Zuclopentixol acetate Clopixol Acuphase Typical Viscoleo b50–200 mg/1–3 days1–2 days1–2 days4.7–4.9
Zuclopentixol decanoate Clopixol Depot Typical Viscoleo b50–800 mg/2–4 weeks4–9 days ?11–21 days7.5–9.0
Note: All by intramuscular injection. Footnotes:a = Microcrystalline or nanocrystalline aqueous suspension. b = Low-viscosity vegetable oil (specifically fractionated coconut oil with medium-chain triglycerides). c = Predicted, from PubChem and DrugBank. Sources:Main: See template.

Formulations

It is sold under the brand names Trilafon (single drug) and Etrafon/Triavil/Triptafen [28] (contains fixed dosages of amitriptyline). A brand name in Europe is Decentan pointing to the fact that perphenazine is approximately 10-times more potent than chlorpromazine. Usual oral forms are tablets (2, 4, 8, 16 mg) and liquid concentrate (4 mg/ml).

The 'Perphenazine injectable USP' solution is intended for deep intramuscular (i.m.) injection, for patients who are not willing to take oral medication or if the patient is unable to swallow. Due to a better bioavailability of the injection, two-thirds of the original oral dose is sufficient. The incidence of hypotension, sedation and extrapyramidal side-effects may be higher compared to oral treatment. The i.m.-injections are appropriate for a few days, but oral treatment should start as soon as possible.

In many countries, depot forms of perphenazine exist (as perphenazine enanthate and perphenazine decanoate). One injection works for 1 to 4 weeks depending on the dose of the depot-injection. Depot-forms of perphenazine should not be used during the initial phase of treatment as the rare neuroleptic malignant syndrome may become more severe and uncontrollable with this form. Extrapyramidal side-effects may be somewhat reduced due to constant plasma-levels during depot-therapy. Also, patient compliance is sure, as many patients do not take their oral medication, particularly if feeling better once improvement in psychosis is achieved.

Interactions

Fluoxetine causes higher plasma levels and a longer elimination half-life of perphenazine, therefore a dose reduction of perphenazine might be necessary.

Perphenazine intensifies the central depressive action of drugs with such activity (tranquilizers, hypnotics, narcotics, antihistaminics, OTC-antiemetics etc.). A dose reduction of perphenazine or the other drug may be necessary.

In general, all neuroleptics may lead to seizures in combination with the opioid tramadol (Ultram).

Perphenazine may increase the insulin needs of diabetic patients. Monitor blood glucose levels of insulin-dependent patients regularly during long-term treatment.

Related Research Articles

<span class="mw-page-title-main">Antipsychotic</span> Class of medications

Antipsychotics, previously known as neuroleptics and major tranquilizers, are a class of psychotropic medication primarily used to manage psychosis, principally in schizophrenia but also in a range of other psychotic disorders. They are also the mainstay, together with mood stabilizers, in the treatment of bipolar disorder. Moreover, they are also used as adjuncts in the treatment of treatment-resistant major depressive disorder.

<span class="mw-page-title-main">Haloperidol</span> Typical antipsychotic medication

Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the treatment of schizophrenia, tics in Tourette syndrome, mania in bipolar disorder, delirium, agitation, acute psychosis, and hallucinations from alcohol withdrawal. It may be used by mouth or injection into a muscle or a vein. Haloperidol typically works within 30 to 60 minutes. A long-acting formulation may be used as an injection every four weeks by people with schizophrenia or related illnesses, who either forget or refuse to take the medication by mouth.

<span class="mw-page-title-main">Fluphenazine</span> Typical antipsychotic medication

Fluphenazine, sold under the brand name Prolixin among others, is a high-potency typical antipsychotic medication. It is used in the treatment of chronic psychoses such as schizophrenia, and appears to be about equal in effectiveness to low-potency antipsychotics like chlorpromazine. It is given by mouth, injection into a muscle, or just under the skin. There is also a long acting injectable version that may last for up to four weeks. Fluphenazine decanoate, the depot injection form of fluphenazine, should not be used by people with severe depression.

<span class="mw-page-title-main">Typical antipsychotic</span> Class of drugs

Typical antipsychotics are a class of antipsychotic drugs first developed in the 1950s and used to treat psychosis. Typical antipsychotics may also be used for the treatment of acute mania, agitation, and other conditions. The first typical antipsychotics to come into medical use were the phenothiazines, namely chlorpromazine which was discovered serendipitously. Another prominent grouping of antipsychotics are the butyrophenones, an example of which is haloperidol. The newer, second-generation antipsychotics, also known as atypical antipsychotics, have largely supplanted the use of typical antipsychotics as first-line agents due to the higher risk of movement disorders with typical antipsychotics.

<span class="mw-page-title-main">Atypical antipsychotic</span> Class of pharmaceutical drugs

The atypical antipsychotics (AAP), also known as second generation antipsychotics (SGAs) and serotonin–dopamine antagonists (SDAs), are a group of antipsychotic drugs largely introduced after the 1970s and used to treat psychiatric conditions. Some atypical antipsychotics have received regulatory approval for schizophrenia, bipolar disorder, irritability in autism, and as an adjunct in major depressive disorder.

<span class="mw-page-title-main">Risperidone</span> Antipsychotic medication

Risperidone, sold under the brand name Risperdal among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder, as well as irritability associated with autism. It is taken either by mouth or by injection. The injectable versions are long-acting and last for 2–4 weeks.

<span class="mw-page-title-main">Haloperidol decanoate</span> Typical antipsychotic medication

Haloperidol decanoate, sold under the brand name Haldol Decanoate among others, is a typical antipsychotic which is used in the treatment of schizophrenia. It is administered by injection into muscle at a dose of 100 to 200 mg once every 4 weeks or monthly. The dorsogluteal site is recommended. A 3.75-cm (1.5-inch), 21-gauge needle is generally used, but obese individuals may require a 6.5-cm (2.5-inch) needle to ensure that the drug is indeed injected intramuscularly and not subcutaneously. Haloperidol decanoate is provided in the form of 50 or 100 mg/mL oil solution of sesame oil and benzyl alcohol in ampoules or pre-filled syringes. Its elimination half-life after multiple doses is 21 days. The medication is marketed in many countries throughout the world.

<span class="mw-page-title-main">Flupentixol</span> Typical antipsychotic drug of the thioxanthene class

Flupentixol (INN), also known as flupenthixol, marketed under brand names such as Depixol and Fluanxol is a typical antipsychotic drug of the thioxanthene class. It was introduced in 1965 by Lundbeck. In addition to single drug preparations, it is also available as flupentixol/melitracen—a combination product containing both melitracen and flupentixol . Flupentixol is not approved for use in the United States. It is, however, approved for use in the UK, Australia, Canada, Russian Federation, South Africa, New Zealand, Philippines, Iran, Germany, and various other countries.

<span class="mw-page-title-main">Paliperidone</span> Antipsychotic medication

Paliperidone, sold under the brand name Invega among others, is an atypical antipsychotic. It is mainly used to treat schizophrenia and schizoaffective disorder. It is marketed by Janssen Pharmaceuticals. Paliperidone worsens verbal learning and memory compared to placebo when used to treat psychosis.

<span class="mw-page-title-main">Fluspirilene</span> Typical antipsychotic medication

Fluspirilene is a diphenylbutylpiperidine typical antipsychotic drug, used for the treatment of schizophrenia. It is administered intramuscularly. It was discovered at Janssen Pharmaceutica in 1963. A 2007 systematic review investigated the efficacy of fluspirilene decanoate for people with schizophrenia:

<span class="mw-page-title-main">Bromperidol</span> Chemical compound

Bromperidol, sold under the brand names Bromidol and Impromen among others, is a typical antipsychotic of the butyrophenone group which is used in the treatment of schizophrenia. It was discovered at Janssen Pharmaceutica in 1966. An ester prodrug, bromperidol decanoate, is a long-acting form of bromperidol used as a depot injectable.

<span class="mw-page-title-main">Zuclopenthixol</span> Typical antipsychotic medication

Zuclopenthixol, also known as zuclopentixol, is a medication used to treat schizophrenia and other psychoses. It is classed, pharmacologically, as a typical antipsychotic. Chemically it is a thioxanthene. It is the cis-isomer of clopenthixol. Clopenthixol was introduced in 1961, while zuclopenthixol was introduced in 1978.

<span class="mw-page-title-main">Clopenthixol</span> Antipsychotic medication

Clopenthixol (Sordinol), also known as clopentixol, is a typical antipsychotic drug of the thioxanthene class. It was introduced by Lundbeck in 1961.

<span class="mw-page-title-main">Pipotiazine</span> Typical antipsychotic medication

Pipotiazine (Piportil), also known as pipothiazine, is a typical antipsychotic of the phenothiazine class used in the United Kingdom and other countries for the treatment of schizophrenia. Its properties are similar to those of chlorpromazine. A 2004 systematic review investigated its efficacy for people with schizophrenia:

<span class="mw-page-title-main">Aripiprazole lauroxil</span> Chemical compound

Aripiprazole lauroxil, sold under the brand name Aristada, is a long-acting injectable atypical antipsychotic that was developed by Alkermes. It is an N-acyloxymethyl prodrug of aripiprazole that is administered via intramuscular injection once every four to eight weeks for the treatment of schizophrenia. Aripiprazole lauroxil was approved by the U.S. Food and Drug Administration (FDA) on 5 October 2015.

Viscoleo is a thin or low-viscosity vegetable oil. It is specifically a proprietary form of fractionated coconut oil and a medium-chain triglyceride (MCT) oil. It is prepared from the dried, solid endosperm of the fruit Cocos nucifera via hydrolysis, fractionation, and purification. Viscoleo is composed of the medium-chain fatty acids caprylic acid (C8) (55–60%), capric acid (C10) (40%), lauric acid (C12) (1–5%), and caproic acid (C6) (0.5%). It is used as an oil vehicle for several depot antipsychotics including clopentixol decanoate, flupentixol decanoate, pipotiazine palmitate, zuclopentixol acetate, and zuclopentixol decanoate. Injectable antipsychotics using Viscoleo as a carrier may be absorbed more rapidly and have shorter durations than preparations using sesame oil.

<span class="mw-page-title-main">Bromperidol decanoate</span> Chemical compound

Bromperidol decanoate, sold under the brand names Bromidol Depot, Bromodol Decanoato, and Impromen Decanoas, is an antipsychotic which has been marketed in Europe and Latin America. It is an antipsychotic ester and long-acting prodrug of bromperidol which is administered by depot intramuscular injection once every 4 weeks.

<span class="mw-page-title-main">Perphenazine enanthate</span> Typical antipsychotic medication

Perphenazine enanthate, sold under the brand name Trilafon Enantat among others, is a typical antipsychotic and a depot antipsychotic ester which is used in the treatment of schizophrenia and has been marketed in Europe. It is formulated in sesame oil and administered by intramuscular injection and acts as a long-lasting prodrug of perphenazine. Perphenazine enanthate is used at a dose of 25 to 200 mg once every 2 weeks by injection, with a time to peak levels of 2 to 3 days and an elimination half-life of 4 to 7 days.

<span class="mw-page-title-main">Oxyprothepin decanoate</span> Antipsychotic medication

Oxyprothepin decanoate, sold under the brand name Meclopin, is a typical antipsychotic which was used in the treatment of schizophrenia in the Czech Republic but is no longer marketed. It is administered by depot injection into muscle. The medication has an approximate duration of 2 to 3 weeks. The history of oxyprothepin decanoate has been reviewed.

<span class="mw-page-title-main">Antipsychotic ester</span> Class of prodrugs

An antipsychotic ester is an ester of an antipsychotic. They are used clinically as prodrugs to increase fat solubility and thereby prolong duration when antipsychotics are used as depot injectables.

References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-16.
  2. "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA . Retrieved 22 Oct 2023.
  3. Rees L (August 1960). "Chlorpromazine and allied phenothiazine derivatives". British Medical Journal. 2 (5197): 522–5. doi:10.1136/bmj.2.5197.522. PMC   2097091 . PMID   14436902.
  4. Ascher-Svanum H, Zhu B, Faries D, Landbloom R, Swartz M, Swanson J (February 2006). "Time to discontinuation of atypical versus typical antipsychotics in the naturalistic treatment of schizophrenia". BMC Psychiatry. 6: 8. doi: 10.1186/1471-244X-6-8 . PMC   1402287 . PMID   16504026.
  5. Freudenreich O (2007). "Treatment of psychotic disorders". Psychotic disorders. Practical Guides in Psychiatry. Lippincott Williams & Wilkins. p. 88. ISBN   978-0-7817-8543-3 . Retrieved 2009-06-22.
  6. King DJ (February 1998). "Drug treatment of the negative symptoms of schizophrenia". European Neuropsychopharmacology. 8 (1): 33–42. doi:10.1016/S0924-977X(97)00041-2. PMID   9452938. S2CID   37692796.
  7. Lieberman JA (October 2006). "Comparative effectiveness of antipsychotic drugs. A commentary on: Cost Utility Of The Latest Antipsychotic Drugs In Schizophrenia Study (CUtLASS 1) and Clinical Antipsychotic Trials Of Intervention Effectiveness (CATIE)". Archives of General Psychiatry. 63 (10): 1069–72. doi:10.1001/archpsyc.63.10.1069. PMID   17015808.
  8. 1 2 3 Hartung B, Sampson S, Leucht S (March 2015). "Perphenazine for schizophrenia". The Cochrane Database of Systematic Reviews. 2015 (3): CD003443. doi:10.1002/14651858.CD003443.pub3. PMC   7173727 . PMID   25749632.
  9. Kelsey JE, Newport DJ, Nemeroff CB (2006). "Schizophrenia". Principles of psychopharmacology for mental health professionals (illustrated ed.). John Wiley and Sons. p. 114. ISBN   978-0-471-25401-0 . Retrieved 2009-06-22.
  10. Schillevoort I, de Boer A, Herings RM, Roos RA, Jansen PA, Leufkens HG (July 2001). "Antipsychotic-induced extrapyramidal syndromes. Risperidone compared with low- and high-potency conventional antipsychotic drugs". European Journal of Clinical Pharmacology. 57 (4): 327–31. doi:10.1007/s002280100302. hdl: 1874/27881 . PMID   11549212. S2CID   11934011.
  11. Høyberg OJ, Fensbo C, Remvig J, Lingjaerde O, Sloth-Nielsen M, Salvesen I (December 1993). "Risperidone versus perphenazine in the treatment of chronic schizophrenic patients with acute exacerbations". Acta Psychiatrica Scandinavica. 88 (6): 395–402. doi:10.1016/S0149-2918(98)80046-5. PMID   7508675.
  12. Joint Formulary Committee, BMJ, ed. (March 2009). "4.2.1". British National Formulary (57 ed.). United Kingdom: Royal Pharmaceutical Society of Great Britain. p. 192. ISBN   978-0-85369-845-6. Withdrawal of antipsychotic drugs after long-term therapy should always be gradual and closely monitored to avoid the risk of acute withdrawal syndromes or rapid relapse.
  13. 1 2 3 4 5 Haddad P, Haddad PM, Dursun S, Deakin B (2004). Adverse Syndromes and Psychiatric Drugs: A Clinical Guide. OUP Oxford. p. 207-216. ISBN   9780198527480.
  14. Moncrieff J (July 2006). "Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal-related relapse". Acta Psychiatrica Scandinavica. 114 (1): 3–13. doi:10.1111/j.1600-0447.2006.00787.x. PMID   16774655. S2CID   6267180.
  15. Sacchetti E, Vita A, Siracusano A, Fleischhacker W (2013). Adherence to Antipsychotics in Schizophrenia. Springer Science & Business Media. p. 85. ISBN   9788847026797.
  16. National Institute of Mental Health. PDSD Ki Database (Internet) [cited 2013 Oct 3]. Chapel Hill (NC): University of North Carolina. 1998-2013. Available from: "PDSP Database - UNC". Archived from the original on 2013-11-08. Retrieved 2013-11-03.
  17. Sweet RA, Pollock BG, Mulsant BH, Rosen J, Sorisio D, Kirshner M, et al. (April 2000). "Pharmacologic profile of perphenazine's metabolites". Journal of Clinical Psychopharmacology. 20 (2): 181–7. doi:10.1097/00004714-200004000-00010. PMID   10770456.
  18. Parent M, Toussaint C, Gilson H (1983). "Long-term treatment of chronic psychotics with bromperidol decanoate: clinical and pharmacokinetic evaluation". Current Therapeutic Research. 34 (1): 1–6.
  19. 1 2 Jørgensen A, Overø KF (1980). "Clopenthixol and flupenthixol depot preparations in outpatient schizophrenics. III. Serum levels". Acta Psychiatrica Scandinavica. Supplementum. 279: 41–54. doi:10.1111/j.1600-0447.1980.tb07082.x. PMID   6931472.
  20. 1 2 Reynolds JE (1993). "Anxiolytic sedatives, hypnotics and neuroleptics.". Martindale: The Extra Pharmacopoeia (30th ed.). London: Pharmaceutical Press. pp. 364–623.
  21. Ereshefsky L, Saklad SR, Jann MW, Davis CM, Richards A, Seidel DR (May 1984). "Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches". The Journal of Clinical Psychiatry. 45 (5 Pt 2): 50–9. PMID   6143748.
  22. 1 2 Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA (April 1979). "Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man". British Journal of Clinical Pharmacology. 7 (4): 325–31. doi:10.1111/j.1365-2125.1979.tb00941.x. PMC   1429660 . PMID   444352.
  23. Young D, Ereshefsky L, Saklad SR, Jann MW, Garcia N (1984). Explaining the pharmacokinetics of fluphenazine through computer simulations. (Abstract.). 19th Annual Midyear Clinical Meeting of the American Society of Hospital Pharmacists. Dallas, Texas.
  24. Janssen PA, Niemegeers CJ, Schellekens KH, Lenaerts FM, Verbruggen FJ, van Nueten JM, Marsboom RH, Hérin VV, Schaper WK (November 1970). "The pharmacology of fluspirilene (R 6218), a potent, long-acting and injectable neuroleptic drug". Arzneimittel-Forschung. 20 (11): 1689–98. PMID   4992598.
  25. Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in psychosis". Drugs. 33 (1): 31–49. doi:10.2165/00003495-198733010-00002. PMID   3545764.
  26. Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year follow-up". International Pharmacopsychiatry. 17 (4): 238–46. doi:10.1159/000468580. PMID   7185768.
  27. Larsson M, Axelsson R, Forsman A (1984). "On the pharmacokinetics of perphenazine: a clinical study of perphenazine enanthate and decanoate". Current Therapeutic Research. 36 (6): 1071–88.
  28. "Triptafen | Mind, the mental health charity - help for mental health problems". www.mind.org.uk. Retrieved 2017-03-19.