Tripitramine

Last updated

Tripitramine
Tripitramine.svg
Clinical data
Other namesTripitamine
Drug class Muscarinic acetylcholine receptor antagonist; Selective muscarinic acetylcholine M2 receptor antagonist
Identifiers
  • 11-[2-[6-[8-[6-[bis[2-oxo-2-(6-oxo-5H-pyrido[2,3-b][1,4]benzodiazepin-11-yl)ethyl]amino]hexyl-methylamino]octyl-methylamino]hexylamino]acetyl]-5H-pyrido[2,3-b][1,4]benzodiazepin-6-one
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
ChEMBL
Chemical and physical data
Formula C64H77N13O6
Molar mass 1124.405 g·mol−1
3D model (JSmol)
  • CN(CCCCCCCCN(C)CCCCCCN(CC(=O)N1C2=CC=CC=C2C(=O)NC3=C1N=CC=C3)CC(=O)N4C5=CC=CC=C5C(=O)NC6=C4N=CC=C6)CCCCCCNCC(=O)N7C8=CC=CC=C8C(=O)NC9=C7N=CC=C9
  • InChI=1S/C64H77N13O6/c1-72(41-20-8-5-17-35-65-44-56(78)75-53-32-14-11-26-47(53)62(81)69-50-29-23-36-66-59(50)75)39-18-6-3-4-7-19-40-73(2)42-21-9-10-22-43-74(45-57(79)76-54-33-15-12-27-48(54)63(82)70-51-30-24-37-67-60(51)76)46-58(80)77-55-34-16-13-28-49(55)64(83)71-52-31-25-38-68-61(52)77/h11-16,23-34,36-38,65H,3-10,17-22,35,39-46H2,1-2H3,(H,69,81)(H,70,82)(H,71,83)
  • Key:YUJOQEAGGUIMED-UHFFFAOYSA-N

Tripitramine, or tripitamine, is an antimuscarinic drug which was never marketed. [1] [2] [3] [4]

Contents

Pharmacology

The drug is a selective antagonist of the muscarinic acetylcholine M2 receptor. [1] [2] [3] [5] [6] Its affinities (Ki) for the muscarinic acetylcholine receptors are 0.27 nM for the M2 receptor, 1.58 nM for the M1 receptor (5.9-fold less than for M2), 6.41 nM for the M4 receptor (24-fold less than for M2), 33.87 nM for the M5 receptor (125-fold less than for M2), and 38.25 nM for the M3 receptor (142-fold less than for M2). [2] [5] Tripitramine has been found to be cardioselective and to increase heart rate in animals. [1] [7]

Chemistry

Structurally, it consists of three pirenzepine- or AQ-RA 741-like tricyclic (more specifically pyridobenzodiazepine) moieties bound together by a long amine-containing hydrocarbon chain similar to the one found within methoctramine (a modestly M2-selective antimuscarinic agent). [1] [8] [4] Related compounds with analogous structural designs include dipitramine, spirotramine, caproctamine, and benextramine, among others. [1]

History

Tripitramine was first described in the scientific literature by 1993. [4] It was developed in efforts to discover more highly selective M2 receptor antagonists than methoctramine. [1] [4]

Related Research Articles

<span class="mw-page-title-main">Acetylcholine receptor</span> Integral membrane protein

An acetylcholine receptor or a cholinergic receptor is an integral membrane protein that responds to the binding of acetylcholine, a neurotransmitter.

<span class="mw-page-title-main">Hyoscyamine</span> Tropane alkaloid

Hyoscyamine is a naturally occurring tropane alkaloid and plant toxin. It is a secondary metabolite found in certain plants of the family Solanaceae, including henbane, mandrake, angel's trumpets, jimsonweed, the sorcerers' tree, and Atropa belladonna. It is the levorotary isomer of atropine and thus sometimes known as levo-atropine.

<span class="mw-page-title-main">Muscarine</span> Chemical compound

Muscarine, L-(+)-muscarine, or muscarin is a natural product found in certain mushrooms, particularly in Inocybe and Clitocybe species, such as the deadly C. dealbata. Mushrooms in the genera Entoloma and Mycena have also been found to contain levels of muscarine which can be dangerous if ingested. Muscarine has been found in harmless trace amounts in Boletus, Hygrocybe, Lactarius and Russula. Trace concentrations of muscarine are also found in Amanita muscaria, though the pharmacologically more relevant compound from this mushroom is the Z-drug-like alkaloid muscimol. A. muscaria fruitbodies contain a variable dose of muscarine, usually around 0.0003% fresh weight. This is very low and toxicity symptoms occur very rarely. Inocybe and Clitocybe contain muscarine concentrations up to 1.6%.

<span class="mw-page-title-main">Agonist</span> Chemical which binds to and activates a biochemical receptor

An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the agonist, while an inverse agonist causes an action opposite to that of the agonist.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers. They are mainly found in the parasympathetic nervous system, but also have a role in the sympathetic nervous system in the control of sweat glands.

Functional selectivity is the ligand-dependent selectivity for certain signal transduction pathways relative to a reference ligand at the same receptor. Functional selectivity can be present when a receptor has several possible signal transduction pathways. To which degree each pathway is activated thus depends on which ligand binds to the receptor. Functional selectivity, or biased signaling, is most extensively characterized at G protein coupled receptors (GPCRs). A number of biased agonists, such as those at muscarinic M2 receptors tested as analgesics or antiproliferative drugs, or those at opioid receptors that mediate pain, show potential at various receptor families to increase beneficial properties while reducing side effects. For example, pre-clinical studies with G protein biased agonists at the μ-opioid receptor show equivalent efficacy for treating pain with reduced risk for addictive potential and respiratory depression. Studies within the chemokine receptor system also suggest that GPCR biased agonism is physiologically relevant. For example, a beta-arrestin biased agonist of the chemokine receptor CXCR3 induced greater chemotaxis of T cells relative to a G protein biased agonist.

<span class="mw-page-title-main">Muscarinic agonist</span> Activating agent of the muscarinic acetylcholine receptor

A muscarinic acetylcholine receptor agonist, also simply known as a muscarinic agonist or as a muscarinic agent, is an agent that activates the activity of the muscarinic acetylcholine receptor. The muscarinic receptor has different subtypes, labelled M1-M5, allowing for further differentiation.

<span class="mw-page-title-main">Darifenacin</span> Medication for urinary incontinence

Darifenacin is a medication used to treat urinary incontinence due to an overactive bladder. It was discovered by scientists at the Pfizer research site in Sandwich, UK under the identifier UK-88,525 and used to be marketed by Novartis. In 2010, the US rights were sold to Warner Chilcott for US$400 million.

<span class="mw-page-title-main">Alcuronium chloride</span> Muscle relaxant

Alcuronium chloride is a neuromuscular blocking (NMB) agent, alternatively referred to as a skeletal muscle relaxant. It is a semi-synthetic substance prepared from C-toxiferine I, a bis-quaternary alkaloid obtained from Strychnos toxifera. C-toxiferine I itself has been tested for its pharmacological action and noted to be a very long acting neuromuscular blocking agent For a formal definition of the durations of actions associated with NMB agents, see page for gantacurium. The replacement of both the N-methyl groups with N-allyl moieties yielded N,N-diallyl-bis-nortoxiferine, now recognized as alcuronium.

<span class="mw-page-title-main">Muscarinic antagonist</span> Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic acetylcholine receptor antagonist, also simply known as a muscarinic antagonist or as an antimuscarinic agent, is a type of anticholinergic drug that blocks the activity of the muscarinic acetylcholine receptors (mAChRs). The muscarinic receptors are proteins involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine.

Muscarinic acetylcholine receptor M<sub>5</sub> Protein-coding gene in the species Homo sapiens

The human muscarinic acetylcholine receptor M5, encoded by the CHRM5 gene, is a member of the G protein-coupled receptor superfamily of integral membrane proteins. It is coupled to Gq protein. Binding of the endogenous ligand acetylcholine to the M5 receptor triggers a number of cellular responses such as adenylate cyclase inhibition, phosphoinositide degradation, and potassium channel modulation. Muscarinic receptors mediate many of the effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor have not been fully explored; however, stimulation of this receptor is known to effectively decrease cyclic AMP levels and downregulate the activity of protein kinase A (PKA).

Muscarinic acetylcholine receptor M<sub>1</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M1, also known as the cholinergic receptor, muscarinic 1, is a muscarinic receptor that in humans is encoded by the CHRM1 gene. It is localized to 11q13.

Muscarinic acetylcholine receptor M<sub>2</sub> Receptor protein found in humans

The muscarinic acetylcholine receptor M2, also known as the cholinergic receptor, muscarinic 2, is a muscarinic acetylcholine receptor that in humans is encoded by the CHRM2 gene. Multiple alternatively spliced transcript variants have been described for this gene. It is Gi-coupled, reducing intracellular levels of cAMP.

Muscarinic acetylcholine receptor M<sub>4</sub> Protein-coding gene

The muscarinic acetylcholine receptor M4, also known as the cholinergic receptor, muscarinic 4 (CHRM4), is a protein that, in humans, is encoded by the CHRM4 gene.

<span class="mw-page-title-main">Xanomeline</span> Chemical compound

Xanomeline is a small molecule muscarinic acetylcholine receptor agonist that was first synthesized in a collaboration between Eli Lilly and Novo Nordisk as an investigational therapeutic being studied for the treatment of central nervous system (CNS) disorders.

<span class="mw-page-title-main">Vedaclidine</span> Chemical compound

Vedaclidine (INN, codenamed LY-297,802, NNC 11-1053) is an experimental analgesic drug which acts as a mixed agonist–antagonist at muscarinic acetylcholine receptors, being a potent and selective agonist for the M1 and M4 subtypes, yet an antagonist at the M2, M3 and M5 subtypes. It is orally active and an effective analgesic over 3× the potency of morphine, with side effects such as salivation and tremor only occurring at many times the effective analgesic dose. Human trials showed little potential for development of dependence or abuse, and research is continuing into possible clinical application in the treatment of neuropathic pain and cancer pain relief.

<span class="mw-page-title-main">Methoctramine</span> Chemical compound

Methoctramine is a polymethylene tetraamine that acts as a muscarinic antagonist. It preferentially binds to the pre-synaptic receptor M2, a muscarinic acetylcholine ganglionic protein complex present basically in heart cells. In normal conditions -absence of methoctramine-, the activation of M2 receptors diminishes the speed of conduction of the sinoatrial and atrioventricular nodes thus reducing the heart rate. Thanks to its apparently high cardioselectivity, it has been studied as a potential parasymphatolitic drug, particularly against bradycardia. However, currently it is only addressed for research purposes, since the administration to humans is still unavailable.

<span class="mw-page-title-main">WB-4101</span> Chemical compound

WB-4101 is a compound which acts as an antagonist at the α1B-adrenergic receptor. It was one of the first selective antagonists developed for this receptor and was invented in 1969, but is still commonly used in research into adrenergic receptors, especially as a lead compound from which to develop more selective drugs.

Peripherally selective drugs have their primary mechanism of action outside of the central nervous system (CNS), usually because they are excluded from the CNS by the blood–brain barrier. By being excluded from the CNS, drugs may act on the rest of the body without producing side-effects related to their effects on the brain or spinal cord. For example, most opioids cause sedation when given at a sufficiently high dose, but peripherally selective opioids can act on the rest of the body without entering the brain and are less likely to cause sedation. These peripherally selective opioids can be used as antidiarrheals, for instance loperamide (Imodium).

References

  1. 1 2 3 4 5 6 Melchiorre C, Antonello A, Banzi R, Bolognesi ML, Minarini A, Rosini M, et al. (March 2003). "Polymethylene tetraamine backbone as template for the development of biologically active polyamines". Medicinal Research Reviews. 23 (2): 200–233. doi:10.1002/med.10029. PMID   12500289.
  2. 1 2 3 Zlotos DP, Bender W, Holzgrabe U (1999). "Muscarinic receptor agonists and antagonists". Expert Opinion on Therapeutic Patents. 9 (8). Informa Healthcare: 1029–1053. doi:10.1517/13543776.9.8.1029. ISSN   1354-3776.
  3. 1 2 Eglen RM, Watson N (February 1996). "Selective muscarinic receptor agonists and antagonists". Pharmacology & Toxicology. 78 (2): 59–68. doi:10.1111/j.1600-0773.1996.tb00181.x. PMID   8822036.
  4. 1 2 3 4 Melchiorre C, Bolognesi ML, Chiarini A, Minarini A, Spampinato S (November 1993). "Synthesis and biological activity of some methoctramine-related tetraamines bearing a 11-acetyl-5,11-dihydro-6H-pyrido[2,3-b][1,4]-benzodiazepin-6-one moiety as antimuscarinics: a second generation of highly selective M2 muscarinic receptor antagonists". Journal of Medicinal Chemistry. 36 (23): 3734–3737. doi:10.1021/jm00075a032. PMID   8246244.
  5. 1 2 Maggio R, Barbier P, Bolognesi ML, Minarini A, Tedeschi D, Melchiorre C (August 1994). "Binding profile of the selective muscarinic receptor antagonist tripitramine". European Journal of Pharmacology. 268 (3): 459–462. doi:10.1016/0922-4106(94)90075-2. PMID   7805774.
  6. Chiarini A, Budriesi R, Bolognesi ML, Minarini A, Melchiorre C (April 1995). "In vitro characterization of tripitramine, a polymethylene tetraamine displaying high selectivity and affinity for muscarinic M2 receptors". British Journal of Pharmacology. 114 (7): 1507–1517. doi:10.1111/j.1476-5381.1995.tb13378.x. PMC   1510296 . PMID   7606355.
  7. Angeli P, Cantalamessa F, Gulini U, Melchiorre C (September 1995). "Selective blockade of muscarinic M2 receptors in vivo by the new antagonist tripitramine". Naunyn-Schmiedeberg's Archives of Pharmacology. 352 (3): 304–307. doi:10.1007/BF00168561. PMID   8584046.
  8. "Tripitramine". PubChem. Retrieved 27 October 2024.