AFDX-384

Last updated
AFDX-384
AFDX-384.svg
Identifiers
  • N-(2-[(2R)-2-[(dipropylamino)methyl]piperidin-1-yl]ethyl)-6-oxo-5H-pyrido[2,3-b][1,4]benzodiazepine-11-carboxamide
CAS Number
PubChem CID
ChemSpider
ChEBI
CompTox Dashboard (EPA)
Chemical and physical data
Formula C27H38N6O2
Molar mass 478.641 g·mol−1
3D model (JSmol)
  • O=C1Nc2cccnc2N(c4c1cccc4)C(=O)NCCN3CCCCC3CN(CCC)CCC
  • InChI=1S/C27H38N6O2/c1-3-16-31(17-4-2)20-21-10-7-8-18-32(21)19-15-29-27(35)33-24-13-6-5-11-22(24)26(34)30-23-12-9-14-28-25(23)33/h5-6,9,11-14,21H,3-4,7-8,10,15-20H2,1-2H3,(H,29,35)(H,30,34)/t21-/m1/s1 Yes check.svgY
  • Key:MZDYABXXPZNUCT-OAQYLSRUSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

AFDX-384 (BIBN-161) is a drug which acts as a selective antagonist of the muscarinic acetylcholine receptors, with selectivity for the M2 and M4 subtypes. It is used mainly for mapping the distribution of M2 and M4 muscarinic receptors in the brain, and studying their involvement in the development and treatment of dementia and schizophrenia. [1] [2] [3] [4] [5] [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Cingulate cortex</span> Part of the brain within the cerebral cortex

The cingulate cortex is a part of the brain situated in the medial aspect of the cerebral cortex. The cingulate cortex includes the entire cingulate gyrus, which lies immediately above the corpus callosum, and the continuation of this in the cingulate sulcus. The cingulate cortex is usually considered part of the limbic lobe.

The dopamine hypothesis of schizophrenia or the dopamine hypothesis of psychosis is a model that attributes the positive symptoms of schizophrenia to a disturbed and hyperactive dopaminergic signal transduction. The model draws evidence from the observation that a large number of antipsychotics have dopamine-receptor antagonistic effects. The theory, however, does not posit dopamine overabundance as a complete explanation for schizophrenia. Rather, the overactivation of D2 receptors, specifically, is one effect of the global chemical synaptic dysregulation observed in this disorder.

<span class="mw-page-title-main">Dizocilpine</span> Chemical compound

Dizocilpine (INN), also known as MK-801, is a pore blocker of the N-Methyl-D-aspartate (NMDA) receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is normally blocked with a magnesium ion and requires depolarization of the neuron to remove the magnesium and allow the glutamate to open the channel, causing an influx of calcium, which then leads to subsequent depolarization. Dizocilpine binds inside the ion channel of the receptor at several of PCP's binding sites thus preventing the flow of ions, including calcium (Ca2+), through the channel. Dizocilpine blocks NMDA receptors in a use- and voltage-dependent manner, since the channel must open for the drug to bind inside it. The drug acts as a potent anti-convulsant and probably has dissociative anesthetic properties, but it is not used clinically for this purpose because of the discovery of brain lesions, called Olney's lesions (see below), in laboratory rats. Dizocilpine is also associated with a number of negative side effects, including cognitive disruption and psychotic-spectrum reactions. It inhibits the induction of long term potentiation and has been found to impair the acquisition of difficult, but not easy, learning tasks in rats and primates. Because of these effects of dizocilpine, the NMDA receptor pore blocker ketamine is used instead as a dissociative anesthetic in human medical procedures. While ketamine may also trigger temporary psychosis in certain individuals, its short half-life and lower potency make it a much safer clinical option. However, dizocilpine is the most frequently used uncompetitive NMDA receptor antagonist in animal models to mimic psychosis for experimental purposes.

<span class="mw-page-title-main">Glutamate receptor</span> Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

<span class="mw-page-title-main">Muscarinic agonist</span>

A muscarinic agonist is an agent that activates the activity of the muscarinic acetylcholine receptor. The muscarinic receptor has different subtypes, labelled M1-M5, allowing for further differentiation.

<span class="mw-page-title-main">Posterior cingulate cortex</span> Caudal part of the cingulate cortex of the brain

The posterior cingulate cortex (PCC) is the caudal part of the cingulate cortex, located posterior to the anterior cingulate cortex. This is the upper part of the "limbic lobe". The cingulate cortex is made up of an area around the midline of the brain. Surrounding areas include the retrosplenial cortex and the precuneus.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations. 5-HT is short for 5-hydroxy-tryptamine or serotonin. This is the main excitatory receptor subtype among the GPCRs for serotonin, although 5-HT2A may also have an inhibitory effect on certain areas such as the visual cortex and the orbitofrontal cortex. This receptor was first noted for its importance as a target of serotonergic psychedelic drugs such as LSD and psilocybin mushrooms. Later it came back to prominence because it was also found to be mediating, at least partly, the action of many antipsychotic drugs, especially the atypical ones.

<span class="mw-page-title-main">Pirenzepine</span> Chemical compound

Pirenzepine (Gastrozepin), an M1 selective antagonist, is used in the treatment of peptic ulcers, as it reduces gastric acid secretion and reduces muscle spasm. It is in a class of drugs known as muscarinic receptor antagonists - acetylcholine being the neurotransmitter of the parasympathetic nervous system which initiates the rest-and-digest state (as opposed to fight-or-flight), resulting in an increase in gastric motility and digestion; whereas pirenzepine would inhibit these actions and cause decreased gastric motility leading to delayed gastric emptying and constipation. It has no effects on the brain and spinal cord as it cannot diffuse through the blood–brain barrier.

<span class="mw-page-title-main">Ciproxifan</span> Chemical compound

Ciproxifan is an extremely potent histamine H3 inverse agonist/antagonist.

<span class="mw-page-title-main">Muscarinic antagonist</span> Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic receptor antagonist (MRA) is a type of anticholinergic agent that blocks the activity of the muscarinic acetylcholine receptor. The muscarinic receptor is a protein involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

Muscarinic acetylcholine receptor M<sub>5</sub>

The human muscarinic acetylcholine receptor M5, encoded by the CHRM5 gene, is a member of the G protein-coupled receptor superfamily of integral membrane proteins. It is coupled to Gq protein. Binding of the endogenous ligand acetylcholine to the M5 receptor triggers a number of cellular responses such as adenylate cyclase inhibition, phosphoinositide degradation, and potassium channel modulation. Muscarinic receptors mediate many of the effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor have not been fully explored; however, stimulation of this receptor is known to effectively decrease cyclic AMP levels and downregulate the activity of protein kinase A (PKA).

Dopamine receptor D<sub>2</sub> Main receptor for most antipsychotic drugs

Dopamine receptor D2, also known as D2R, is a protein that, in humans, is encoded by the DRD2 gene. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D2 receptor. The dopamine D2 receptor is the main receptor for most antipsychotic drugs. The structure of DRD2 in complex with the atypical antipsychotic risperidone has been determined.

Muscarinic acetylcholine receptor M<sub>3</sub> Protein and coding gene in humans

The muscarinic acetylcholine receptor, also known as cholinergic/acetylcholine receptor M3, or the muscarinic 3, is a muscarinic acetylcholine receptor encoded by the human gene CHRM3.

Muscarinic acetylcholine receptor M<sub>4</sub> Protein-coding gene

The muscarinic acetylcholine receptor M4, also known as the cholinergic receptor, muscarinic 4 (CHRM4), is a protein that, in humans, is encoded by the CHRM4 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 3</span> Mammalian protein found in Homo sapiens

Metabotropic glutamate receptor 3 (mGluR3) is an inhibitory Gi/G0-coupled G-protein coupled receptor (GPCR) generally localized to presynaptic sites of neurons in classical circuits. However, in higher cortical circuits in primates, mGluR3 are localized post-synaptically, where they strengthen rather than weaken synaptic connectivity. In humans, mGluR3 is encoded by the GRM3 gene. Deficits in mGluR3 signaling have been linked to impaired cognition in humans, and to increased risk of schizophrenia, consistent with their expanding role in cortical evolution.

<span class="mw-page-title-main">Xanomeline</span> Chemical compound

Xanomeline is a small molecule muscarinic acetylcholine receptor agonist that was first synthesized in a collaboration between Eli Lilly and Novo Nordisk as an investigational therapeutic being studied for the treatment of central nervous system disorders.

<span class="mw-page-title-main">SB-258585</span> Chemical compound

SB-258585 is a drug which is used in scientific research. It acts as a potent, selective and orally active 5-HT6 receptor antagonist, with a Ki of 8.9nM. It is used in its 125I radiolabelled form to map the distribution of 5-HT6 receptors in the brain.

<span class="mw-page-title-main">Pimavanserin</span> Chemical compound

Pimavanserin , sold under the brand name Nuplazid, is an atypical antipsychotic which is approved for the treatment of Parkinson's disease psychosis and is also being studied for the treatment of Alzheimer’s disease psychosis, schizophrenia, agitation, and major depressive disorder. Unlike other antipsychotics, pimavanserin is not a dopamine receptor antagonist.

<span class="mw-page-title-main">Fluparoxan</span> Chemical compound

Fluparoxan is a potent α2-adrenergic receptor antagonist with excellent selectivity for this receptor over the α1-adrenergic receptor (2,630-fold), and is the only well-studied α2-adrenergic receptor antagonist in its structural family which does not antagonize any variant of the imidazoline receptor. It was shown to possess central α2-adrenoceptor antagonist activity after oral doses in man and was patented as an antidepressant by Glaxo in the early 1980s, but its development was discontinued when the compound failed to show a clear clinical advantage over existing therapies.

KarXT is an investigational oral dual-drug fixed-dose combination of xanomeline and trospium which is currently being evaluated in a phase 3 clinical trial for the treatment of patients suffering from the symptoms of schizophrenia. Xanomeline is a functionally preferring muscarinic M4 and M1 receptor agonist that readily passes into the central nervous system (CNS) to stimulate these muscarinic receptor subtypes in key areas of the brain. Trospium is a non-selective muscarinic antagonist that does not cross into the CNS and reduces peripheral cholinergic side effects associated with xanomeline.

References

  1. Tränkle C, Andresen I, Lambrecht G, Mohr K (February 1998). "M2 receptor binding of the selective antagonist AF-DX 384: possible involvement of the common allosteric site". Molecular Pharmacology. 53 (2): 304–12. doi:10.1124/mol.53.2.304. PMID   9463489.
  2. Kitaichi K, Day JC, Quirion R (October 1999). "A novel muscarinic M(4) receptor antagonist provides further evidence of an autoreceptor role for the muscarinic M(2) receptor sub-type". European Journal of Pharmacology. 383 (1): 53–6. doi:10.1016/S0014-2999(99)00607-X. PMID   10556681.
  3. Martin J, Deagostino A, Perrio C, Dauphin F, Ducandas C, Morin C, Desbène PL, Lasne MC (March 2000). "Syntheses of R and S isomers of AF-DX 384, a selective antagonist of muscarinic M2 receptors". Bioorganic & Medicinal Chemistry. 8 (3): 591–600. doi:10.1016/S0968-0896(99)00307-7. PMID   10732976.
  4. Piggott M, Owens J, O'Brien J, Paling S, Wyper D, Fenwick J, Johnson M, Perry R, Perry E (September 2002). "Comparative distribution of binding of the muscarinic receptor ligands pirenzepine, AF-DX 384, (R,R)-I-QNB and (R,S)-I-QNB to human brain". Journal of Chemical Neuroanatomy. 24 (3): 211–23. doi:10.1016/S0891-0618(02)00066-2. PMID   12297267. S2CID   1935197.
  5. Zavitsanou K, Katsifis A, Yu Y, Huang XF (May 2005). "M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders". Brain Research Bulletin. 65 (5): 397–403. doi:10.1016/j.brainresbull.2005.02.007. PMID   15833594. S2CID   19527958.
  6. Teaktong T, Piggott MA, Mckeith IG, Perry RH, Ballard CG, Perry EK (June 2005). "Muscarinic M2 and M4 receptors in anterior cingulate cortex: relation to neuropsychiatric symptoms in dementia with Lewy bodies". Behavioural Brain Research. 161 (2): 299–305. doi:10.1016/j.bbr.2005.02.019. PMID   15922057. S2CID   34247659.
  7. Gibbons AS, Scarr E, McLean C, Sundram S, Dean B (August 2009). "Decreased muscarinic receptor binding in the frontal cortex of bipolar disorder and major depressive disorder subjects". Journal of Affective Disorders. 116 (3): 184–91. doi:10.1016/j.jad.2008.11.015. PMC   2724602 . PMID   19103464.