Methoctramine

Last updated
Methoctramine
Methoctramine.svg
Methoctramine.jpg
Legal status
Legal status
  • US:Only for research
Identifiers
  • N, N'-bis[6-[(2-methoxybenzyl)amino]hexyl]-1, 8-octanediamine
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEBI
CompTox Dashboard (EPA)
Chemical and physical data
Formula C36H62N4O2
Molar mass 582.918 g·mol−1
3D model (JSmol)
Solubility in water 20 g/l mg/mL (20 °C)
  • COC1=CC=CC=C1CNCCCCCCNCCCCCCCCNCCCCCCNCC2=CC=CC=C2OC
  • InChI=1S/C36H62N4O2/c1-41-35-23-13-11-21-33(35)31-39-29-19-9-7-17-27-37-25-15-5-3-4-6-16-26-38-28-18-8-10-20-30-40-32-34-22-12-14-24-36(34)42-2/h11-14,21-24,37-40H,3-10,15-20,25-32H2,1-2H3 Yes check.svgY

Methoctramine is a polymethylene tetraamine that acts as a muscarinic antagonist. It preferentially binds to the pre-synaptic receptor M2, a muscarinic acetylcholine ganglionic protein complex present basically in heart cells. In normal conditions -absence of methoctramine-, the activation of M2 receptors diminishes the speed of conduction of the sinoatrial and atrioventricular nodes thus reducing the heart rate. Thanks to its apparently high cardioselectivity, it has been studied as a potential parasymphatolitic drug, particularly against bradycardia. However, currently it is only addressed for research purposes, since the administration to humans is still unavailable.

Contents

Chemistry

Mechanism of action

Methoctramine has been shown to competitively antagonize muscarinic receptors, thus preventing them from binding to the neurotransmitter acetylcholine (and other agonists, such as bethanechol or berberine). At higher concentrations, allosteric properties of methoctramine have also been described. [1]

Biochemical literature distinguishes 5 different types of muscarinic receptors, each of one having a different affinity to methoctramine:

Muscarinic receptor subtypeM1M2M3M4M5
Affinity constants (nM) in Chinese hamster ovary cells. [2] 5013.221431.6135

The lower the affinity constants are, the more affinity exists.

As shown in the chart above, methoctramine binds preferently to M2 receptors, found mostly in the parasympathetic nerves and atria. There, the activity it develops is clearly related to the contraction process. In presence of acetylcholine, M2 receptors are believed to play an autoinhibitory role in the atria, triggering processes that prevent contraction from occurring. Hence, the presence of the antagonist methoctramine provokes an increase of the heart rate.

In marked contrast of the above, methoctramine has the opposite function in other organs: it inhibits contraction. This occurs especially in the bladder, where, unlike the heart, autoinhibitory processes of this type do not exist.

Recent research, however, led to find the mentioned specialty dubious, rising the possibility of it binding to other types of receptors, such as nicotinic ACh receptors –at micromolar concentrations- or adenosine A3.

Effects

The exact effects of methoctramine still remain unknown. However, the few experiments conducted have led to relate this molecule to the following:

Uses

Still object of investigation, methoctramine has not been introduced in the pharmacological industry yet. Research conducted in mice (and other animals), suggests nonetheless many clinical uses of it, thanks to its implications in contraction processes. These applications include, but are not limited to:

Toxicity

Methoctramine was shown to produce some cytotoxic effects, [8] being the cardiomyoblasts the most sensitive cells reported. Cell death occurs only at high micromolar concentrations (being the average pharmacological dose at nanomolar level). From all the methoctramine-derived polymers, those with more spacing between the inner nitrogen atoms were shown to have the lowest lethal doses.

This mentioned toxicity has its origin in a non-muscarinic mechanism, and bears a strong resemblance to other anticholinergic drugs, such as gallamine.

There’s evidence that lithium could act as an antidote against methoctramine. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Atropine</span> Anticholinergic medication used as antidote for nerve agent poisoning

Atropine is a tropane alkaloid and anticholinergic medication used to treat certain types of nerve agent and pesticide poisonings as well as some types of slow heart rate, and to decrease saliva production during surgery. It is typically given intravenously or by injection into a muscle. Eye drops are also available which are used to treat uveitis and early amblyopia. The intravenous solution usually begins working within a minute and lasts half an hour to an hour. Large doses may be required to treat some poisonings.

<span class="mw-page-title-main">Muscarine</span> Chemical compound

Muscarine, L-(+)-muscarine, or muscarin is a natural product found in certain mushrooms, particularly in Inocybe and Clitocybe species, such as the deadly C. dealbata. Mushrooms in the genera Entoloma and Mycena have also been found to contain levels of muscarine which can be dangerous if ingested. Muscarine has been found in harmless trace amounts in Boletus, Hygrocybe, Lactarius and Russula. Trace concentrations of muscarine are also found in Amanita muscaria, though the pharmacologically more relevant compound from this mushroom is the Z-drug-like alkaloid muscimol. A. muscaria fruitbodies contain a variable dose of muscarine, usually around 0.0003% fresh weight. This is very low and toxicity symptoms occur very rarely. Inocybe and Clitocybe contain muscarine concentrations up to 1.6%.

<span class="mw-page-title-main">Agonist</span> Chemical which binds to and activates a biochemical receptor

An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the agonist, while an inverse agonist causes an action opposite to that of the agonist.

<span class="mw-page-title-main">Chlorphenamine</span> Antihistamine used to treat allergies

Chlorphenamine, also known as chlorpheniramine, is an antihistamine used to treat the symptoms of allergic conditions such as allergic rhinitis. It is taken orally. The medication takes effect within two hours and lasts for about 4–6 hours. It is a first-generation antihistamine and works by blocking the H1 receptor.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers. They are mainly found in the parasympathetic nervous system, but also have a role in the sympathetic nervous system in the control of sweat glands.

<span class="mw-page-title-main">Epibatidine</span> Toxic chemical from some poison dart frogs

Epibatidine is a chlorinated alkaloid that is secreted by the Ecuadoran frog Epipedobates anthonyi and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until 1992. Whether epibatidine occurs naturally remains controversial due to challenges in conclusively identifying the compound from the limited samples collected by Daly. By the time that high-resolution spectrometry was used in 1991, there remained less than one milligram of extract from Daly's samples, raising concerns about possible contamination. Samples from other batches of the same species of frog failed to yield epibatidine.

<span class="mw-page-title-main">Chlorprothixene</span> Typical antipsychotic medication

Chlorprothixene, sold under the brand name Truxal among others, is a typical antipsychotic of the thioxanthene group.

<span class="mw-page-title-main">Oxybutynin</span> Medication for overactive bladder

Oxybutynin, sold under the brand name Ditropan among others, is an anticholinergic medication primarily used to treat overactive bladder. It is widely considered a first-line therapy for overactive bladder due to its well-studied side effect profile, broad applicability, and continued efficacy over long periods of time. It works similar to tolterodine, darifenacin, and solifenacin, although it is usually preferred over these medications. It is sometimes used off-label for treatment of hyperhidrosis, or excessive sweating. It has also been used off-label to treat bed wetting in children, but this use has declined, as it is most likely ineffective in this role. It is taken by mouth or applied to the skin.

<span class="mw-page-title-main">Darifenacin</span> Medication for urinary incontinence

Darifenacin is a medication used to treat urinary incontinence due to an overactive bladder. It was discovered by scientists at the Pfizer research site in Sandwich, UK under the identifier UK-88,525 and used to be marketed by Novartis. In 2010, the US rights were sold to Warner Chilcott for US$400 million.

<span class="mw-page-title-main">Solifenacin</span> Chemical compound

Solifenacin, sold as the brand name Vesicare among others, is a medicine used to treat overactive bladder and neurogenic detrusor overactivity (NDO). It may help with incontinence, urinary frequency, and urinary urgency.

<span class="mw-page-title-main">Trospium chloride</span> Chemical compound

Trospium chloride is a muscarinic antagonist used to treat overactive bladder. It has side effects typical of this class of drugs, namely dry mouth, stomach upset, and constipation; these side effects cause problems with people taking their medicine as directed. However it doesn't cause central nervous system side effects like some other muscarinic antagonists. It is in pregnancy category C and is excreted in breast milk.

<span class="mw-page-title-main">Muscarinic antagonist</span> Drug that binds to but does not activate muscarinic cholinergic receptors

A muscarinic receptor antagonist (MRA), also called an antimuscarinic, is a type of anticholinergic agent that blocks the activity of the muscarinic acetylcholine receptor. The muscarinic receptor is a protein involved in the transmission of signals through certain parts of the nervous system, and muscarinic receptor antagonists work to prevent this transmission from occurring. Notably, muscarinic antagonists reduce the activation of the parasympathetic nervous system. The normal function of the parasympathetic system is often summarised as "rest-and-digest", and includes slowing of the heart, an increased rate of digestion, narrowing of the airways, promotion of urination, and sexual arousal. Muscarinic antagonists counter this parasympathetic "rest-and-digest" response, and also work elsewhere in both the central and peripheral nervous systems.

Muscarinic acetylcholine receptor M<sub>5</sub> Protein-coding gene in the species Homo sapiens

The human muscarinic acetylcholine receptor M5, encoded by the CHRM5 gene, is a member of the G protein-coupled receptor superfamily of integral membrane proteins. It is coupled to Gq protein. Binding of the endogenous ligand acetylcholine to the M5 receptor triggers a number of cellular responses such as adenylate cyclase inhibition, phosphoinositide degradation, and potassium channel modulation. Muscarinic receptors mediate many of the effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor have not been fully explored; however, stimulation of this receptor is known to effectively decrease cyclic AMP levels and downregulate the activity of protein kinase A (PKA).

Muscarinic acetylcholine receptor M<sub>1</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M1, also known as the cholinergic receptor, muscarinic 1, is a muscarinic receptor that in humans is encoded by the CHRM1 gene. It is localized to 11q13.

Muscarinic acetylcholine receptor M<sub>2</sub> Protein-coding gene in the species Homo sapiens

The muscarinic acetylcholine receptor M2, also known as the cholinergic receptor, muscarinic 2, is a muscarinic acetylcholine receptor that in humans is encoded by the CHRM2 gene. Multiple alternatively spliced transcript variants have been described for this gene. It is Gi-coupled, reducing intracellular levels of cAMP.

<span class="mw-page-title-main">Oxaprotiline</span> Chemical compound

Oxaprotiline, also known as hydroxymaprotiline, is a norepinephrine reuptake inhibitor belonging to the tetracyclic antidepressant (TeCA) family and is related to maprotiline. Though investigated as an antidepressant, it was never marketed.

<span class="mw-page-title-main">Quinupramine</span> Tricyclic antidepressant

Quinupramine is a tricyclic antidepressant (TCA) used in Europe for the treatment of depression.

Autonomic drugs are substances that can either inhibit or enhance the functions of the parasympathetic and sympathetic nervous systems. This type of drug can be used to treat a wide range of diseases an disorders, including glaucoma, asthma, and disorders of the urinary, gastrointestinal and circulatory systems.

<span class="mw-page-title-main">Cholinergic blocking drug</span> Drug that block acetylcholine in synapses of cholinergic nervous system

Cholinergic blocking drugs are a group of drugs that block the action of acetylcholine (ACh), a neurotransmitter, in synapses of the cholinergic nervous system. They block acetylcholine from binding to cholinergic receptors, namely the nicotinic and muscarinic receptors.

References

  1. Jakubík J, Zimčík P, Randáková A, Fuksová K, El-Fakahany EE, Doležal V (August 2014). "Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors". Molecular Pharmacology. 86 (2): 180–92. doi:10.1124/mol.114.093310. PMID   24870405.
  2. Schwartz W.J.(1997). Frontiers of Neurology and Neuroscience, Vol.15 Sleep Science: Integrating Basic Research and Clinical Practice. Worcester(Massachusetts). Karger. ISBN   978-3-8055-6537-0
  3. Gómez-Martínez LE, Cueva-Rolón R (November 2009). "Muscarinic receptor antagonism at the spinal cord level causes inhibitory effects on male rat sexual behavior". Behavioural Brain Research. 203 (2): 247–55. doi:10.1016/j.bbr.2009.05.010. PMID   19450623.
  4. Ozturk H, Onen A, Guneli E, Cicek R, Tas Hekimoglu A (March 2003). "Effects of methoctramine on bladder overactivity in a rat model". Urology. 61 (3): 671–6. doi:10.1016/s0090-4295(02)02260-4. PMID   12639681.
  5. Lazaris A, Cassel S, Stemmelin J, Cassel JC, Kelche C (2004). "Intrastriatal infusions of methoctramine improve memory in cognitively impaired aged rats". Neurobiology of Aging. 24 (2): 379–83. doi:10.1016/s0197-4580(02)00067-2. PMID   12498972.
  6. Wess J, Angeli P, Melchiorre C, Moser U, Mutschler E, Lambrecht G (September 1988). "Methoctramine selectively blocks cardiac muscarinic M2 receptors in vivo". Naunyn-Schmiedeberg's Archives of Pharmacology. 338 (3): 246–9. doi:10.1007/bf00173395. PMID   3057387.
  7. Watson N, Barnes PJ, Maclagan J (January 1992). "Actions of methoctramine, a muscarinic M2 receptor antagonist, on muscarinic and nicotinic cholinoceptors in guinea-pig airways in vivo and in vitro". British Journal of Pharmacology. 105 (1): 107–12. doi:10.1111/j.1476-5381.1992.tb14219.x. PMC   1908607 . PMID   1596672.
  8. Zini M, Passariello CL, Gottardi D, Cetrullo S, Flamigni F, Pignatti C, et al. (October 2009). "Cytotoxicity of methoctramine and methoctramine-related polyamines". Chemico-Biological Interactions. 181 (3): 409–16. doi:10.1016/j.cbi.2009.06.015. PMID   19576191.
  9. Giladi N, Sutton M, Lo B, Przedborski S, Fahn S, Cadet JL (September 1993). "Toxicity of the specific antimuscarinic agent methoctramine and other non-specific anticholinergic drugs in human neuroblastoma cell lines in vitro". Toxicology in Vitro. 7 (5): 595–603. doi: 10.1016/0887-2333(93)90093-K . PMID   20732256.