Gallamine triethiodide

Last updated
Gallamine triethiodide
Gallamine triethiodide.svg
Clinical data
Trade names Flaxedil
AHFS/Drugs.com International Drug Names
ATC code
Identifiers
  • 2,2’,2’’-[benzene-1,2,3-triyltris(oxy)]tris(N,N,N-triethylethanaminium) triiodide
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
Chemical and physical data
Formula C30H60N3O3+3 · 3 I (gallamine triethiodide)
C24H45N3O3 (gallamine)
Molar mass 891.529 g/mol (gallamine triethiodide)
423.633 g/mol
(gallamine)
3D model (JSmol)
  • [I-].[I-].[I-].O(c1c(OCC[N+](CC)(CC)CC)cccc1OCC[N+](CC)(CC)CC)CC[N+](CC)(CC)CC
  • InChI=1S/C24H45N3O3/c1-7-25(8-2)16-19-28-22-14-13-15-23(29-20-17-26(9-3)10-4)24(22)30-21-18-27(11-5)12-6/h13-15H,7-12,16-21H2,1-6H3 Yes check.svgY
  • Key:ICLWTJIMXVISSR-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)
An ampoule of gallamine. Flaxedil.png
An ampoule of gallamine.

Gallamine triethiodide (Flaxedil) is a non-depolarising muscle relaxant. [1] It acts by combining with the cholinergic receptor sites in muscle and competitively blocking the transmitter action of acetylcholine. [2] Gallamine is a non-depolarising type of blocker as it binds to the acetylcholine receptor but does not have the biological activity of acetyl choline. Gallamine triethiodide has a parasympatholytic effect on the cardiac vagus nerve, which causes tachycardia [3] [4] and occasionally hypertension. Very high doses cause histamine release.[ citation needed ]
Presence of iodine makes it radio opaque, and its ampule in a bag at airport's x-ray scanner raise the false suspicion of a bullet in the bag.

Gallamine triethiodide was commonly used to prevent muscle contractions during surgical procedures, but now superseded by new neuromuscular blocking drugs with less side effects.

It was developed by Daniel Bovet in 1947. [5]

The drug is no longer marketed in the United States, according to the FDA Orange Book.

See also

Related Research Articles

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Suxamethonium chloride</span> Chemical compound

Suxamethonium chloride, also known as suxamethonium or succinylcholine, or simply sux by medical abbreviation, is a medication used to cause short-term paralysis as part of general anesthesia. This is done to help with tracheal intubation or electroconvulsive therapy. It is administered by injection, either into a vein or into a muscle. When used in a vein, onset of action is generally within one minute and effects last for up to 10 minutes.

<span class="mw-page-title-main">Pancuronium bromide</span> Aminosteroid muscle relaxant

Pancuronium is an aminosteroid muscle relaxant with various medical uses. It is used in euthanasia and is used in some states as the second of three drugs administered during lethal injections in the United States.

A muscle relaxant is a drug that affects skeletal muscle function and decreases the muscle tone. It may be used to alleviate symptoms such as muscle spasms, pain, and hyperreflexia. The term "muscle relaxant" is used to refer to two major therapeutic groups: neuromuscular blockers and spasmolytics. Neuromuscular blockers act by interfering with transmission at the neuromuscular end plate and have no central nervous system (CNS) activity. They are often used during surgical procedures and in intensive care and emergency medicine to cause temporary paralysis. Spasmolytics, also known as "centrally acting" muscle relaxant, are used to alleviate musculoskeletal pain and spasms and to reduce spasticity in a variety of neurological conditions. While both neuromuscular blockers and spasmolytics are often grouped together as muscle relaxant, the term is commonly used to refer to spasmolytics only.

Anticholinergics are substances that block the action of the neurotransmitter called acetylcholine (ACh) at synapses in the central and peripheral nervous system.

<span class="mw-page-title-main">Neuromuscular junction</span> Junction between the axon of a motor neuron and a muscle fiber

A neuromuscular junction is a chemical synapse between a motor neuron and a muscle fiber.

<span class="mw-page-title-main">Neostigmine</span> Anti-full body paralysis drug treatment

Neostigmine, sold under the brand name Bloxiverz, among others, is a medication used to treat myasthenia gravis, Ogilvie syndrome, and urinary retention without the presence of a blockage. It is also used in anaesthesia to end the effects of non-depolarising neuromuscular blocking medication. It is given by injection either into a vein, muscle, or under the skin. After injection effects are generally greatest within 30 minutes and last up to 4 hours.

<span class="mw-page-title-main">Pyridostigmine</span> Medication used to treat myasthenia gravis and chronic Orthostatic Hypotension

Pyridostigmine is a medication used to treat myasthenia gravis and underactive bladder. It is also used together with atropine to end the effects of neuromuscular blocking medication of the non-depolarizing type. It is typically given by mouth but can also be used by injection. The effects generally begin within 45 minutes and last up to 6 hours.

<span class="mw-page-title-main">End-plate potential</span>

End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynaptic terminals of muscle fibers have a large, saucer-like appearance. When an action potential reaches the axon terminal of a motor neuron, vesicles carrying neurotransmitters are exocytosed and the contents are released into the neuromuscular junction. These neurotransmitters bind to receptors on the postsynaptic membrane and lead to its depolarization. In the absence of an action potential, acetylcholine vesicles spontaneously leak into the neuromuscular junction and cause very small depolarizations in the postsynaptic membrane. This small response (~0.4mV) is called a miniature end plate potential (MEPP) and is generated by one acetylcholine-containing vesicle. It represents the smallest possible depolarization which can be induced in a muscle.

<span class="mw-page-title-main">Tubocurarine chloride</span> Obsolete muscle relaxant

Tubocurarine is a toxic benzylisoquinoline alkaloid historically known for its use as an arrow poison. In the mid-1900s, it was used in conjunction with an anesthetic to provide skeletal muscle relaxation during surgery or mechanical ventilation. Safer alternatives, such as cisatracurium and rocuronium, have largely replaced it as an adjunct for clinical anesthesia and it is now rarely used.

<span class="mw-page-title-main">Neuromuscular-blocking drug</span> Type of paralyzing anesthetic including lepto- and pachycurares

Neuromuscular-blocking drugs, or Neuromuscular blocking agents (NMBAs), block transmission at the neuromuscular junction, causing paralysis of the affected skeletal muscles. This is accomplished via their action on the post-synaptic acetylcholine (Nm) receptors.

<span class="mw-page-title-main">Trimetaphan camsilate</span> Chemical compound

Trimetaphan camsilate (INN) or trimethaphan camsylate (USAN), trade name Arfonad, is a drug that counteracts cholinergic transmission at the ganglion type of nicotinic receptors of the autonomic ganglia and therefore blocks both the sympathetic nervous system and the parasympathetic nervous system. It acts as a non-depolarizing competitive antagonist at the nicotinic acetylcholine receptor, is short-acting, and is given intravenously.

<span class="mw-page-title-main">Hexamethonium</span> Chemical compound

Hexamethonium is a non-depolarising ganglionic blocker, a neuronal nicotinic (nAChR) receptor antagonist that acts in autonomic ganglia by binding mostly in or on the nAChR receptor, and not the acetylcholine binding site itself. It does not have any effect on the muscarinic acetylcholine receptors (mAChR) located on target organs of the parasympathetic nervous system, nor on the nicotinic receptors at the skeletal neuromuscular junction, but acts as antagonist at the nicotinic acetylcholine receptors located in sympathetic and parasympathetic ganglia (nAChR).

A cholinergic crisis is an over-stimulation at a neuromuscular junction due to an excess of acetylcholine (ACh), as a result of the inactivity of the AChE enzyme, which normally breaks down acetylcholine.

<span class="mw-page-title-main">Rocuronium bromide</span> Chemical compound

Rocuronium bromide is an aminosteroid non-depolarizing neuromuscular blocker or muscle relaxant used in modern anaesthesia to facilitate tracheal intubation by providing skeletal muscle relaxation, most commonly required for surgery or mechanical ventilation. It is used for standard endotracheal intubation, as well as for rapid sequence induction (RSI).

<span class="mw-page-title-main">Gantacurium chloride</span> Chemical compound

Gantacurium chloride is a new experimental neuromuscular blocking drug or skeletal muscle relaxant in the category of non-depolarizing neuromuscular-blocking drugs, used adjunctively in surgical anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. Gantacurium is not yet available for widespread clinical use: it is currently undergoing Phase III clinical development.

<span class="mw-page-title-main">Candocuronium iodide</span> Chemical compound

Candocuronium iodide is a aminosteroid neuromuscular-blocking drug. Its use within anesthesia for endotracheal intubation and for providing skeletal muscle relaxation during surgery or mechanical ventilation was briefly evaluated in clinical studies in India, though further development was discontinued due to attendant cardiovascular effects, primarily tachycardia that was about the same as the clinically established pancuronium bromide. Candocuronium demonstrated a short duration in the body, but a rapid onset of action. It had little to no ganglion blocking activity, with a greater potency than pancuronium.

<span class="mw-page-title-main">Methoctramine</span> Chemical compound

Methoctramine is a polymethylene tetraamine that acts as a muscarinic antagonist. It preferentially binds to the pre-synaptic receptor M2, a muscarinic acetylcholine ganglionic protein complex present basically in heart cells. In normal conditions -absence of methoctramine-, the activation of M2 receptors diminishes the speed of conduction of the sinoatrial and atrioventricular nodes thus reducing the heart rate. Thanks to its apparently high cardioselectivity, it has been studied as a potential parasymphatolitic drug, particularly against bradycardia. However, currently it is only addressed for research purposes, since the administration to humans is still unavailable.

<span class="mw-page-title-main">Cholinergic blocking drug</span> Drug that block acetylcholine in synapses of cholinergic nervous system

Cholinergic blocking drugs are a group of drugs that block the action of acetylcholine (ACh), a neurotransmitter, in synapses of the cholinergic nervous system. They block acetylcholine from binding to cholinergic receptors, namely the nicotinic and muscarinic receptors.

<span class="mw-page-title-main">Neuromuscular drug</span>

Neuromuscular drugs are chemical agents that are used to alter the transmission of nerve impulses to muscles, causing effects such as temporary paralysis of targeted skeletal muscles. Most neuromuscular drugs are available as quaternary ammonium compounds which are derived from acetylcholine (ACh). This allows neuromuscular drugs to act on multiple sites at neuromuscular junctions, mainly as antagonists or agonists of post-junctional nicotinic receptors. Neuromuscular drugs are classified into four main groups, depolarizing neuromuscular blockers, non-depolarizing neuromuscular blockers, acetylcholinesterase inhibitors, and butyrylcholinesterase inhibitors.

References

  1. "Webster's Online Dictionary - Flaxedil" . Retrieved 2008-12-15.[ permanent dead link ]
  2. "RxMed: Pharmaceutical Information - FLAXEDIL" . Retrieved 2008-12-15.
  3. Morgenstern C, Splith G (October 1965). "[Studies on the causes of gallamine tachycardia and its antagonistic modification by beta adrenolytics]". Der Anaesthesist (in German). 14 (10): 298–301. PMID   4380161.
  4. Walts LF (1963). "Ventricular tachycardia with gallamine and cyclopropane anesthesia". Anesthesiology. 24: 119. doi:10.1097/00000542-196301000-00024. PMID   13998750.
  5. Raghavendra T (July 2002). "Neuromuscular blocking drugs: discovery and development". Journal of the Royal Society of Medicine. 95 (7): 363–7. doi:10.1177/014107680209500713. PMC   1279945 . PMID   12091515.