Lorazepam

Last updated

Lorazepam
Lorazepam.svg
Lorazepam ball-and-stick model.png
Clinical data
Trade names Ativan, others [1]
Other nameso-Chloroxazepam
AHFS/Drugs.com Monograph
MedlinePlus a682053
License data
Pregnancy
category
  • AU:C
Dependence
liability
High [2]
Addiction
liability
Moderate [3] [4]
Routes of
administration
By mouth, intramuscular, intravenous, transdermal
Drug class Benzodiazepine
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 85% when taken by mouth
Metabolism Liver glucuronidation
Onset of action 1–5 min (IV), 15–30 min (IM) [14]
Elimination half-life 10–20 hours [15] [16] [17]
Duration of action 12–24 hours (IV, IM) [14]
Excretion Kidney
Identifiers
  • (RS)-7-Chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.011.534 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C15H10Cl2N2O2
Molar mass 321.16 g·mol−1
3D model (JSmol)
  • O=C1Nc2ccc(Cl)cc2C(c2ccccc2Cl)=NC1O
  • InChI=1S/C15H10Cl2N2O2/c16-8-5-6-12-10(7-8)13(19-15(21)14(20)18-12)9-3-1-2-4-11(9)17/h1-7,15,21H,(H,18,20) Yes check.svgY
  • Key:DIWRORZWFLOCLC-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)
A box of Lorazepam Orion (Lorazepam) tablets Lorazepam Orion.jpg
A box of Lorazepam Orion (Lorazepam) tablets

Lorazepam, sold under the brand name Ativan among others, is a benzodiazepine medication. [14] It is used to treat anxiety (including anxiety disorders), trouble sleeping, severe agitation, active seizures including status epilepticus, alcohol withdrawal, and chemotherapy-induced nausea and vomiting. [14] It is also used during surgery to interfere with memory formation and to sedate those who are being mechanically ventilated. [14] [18] It is also used, along with other treatments, for acute coronary syndrome due to cocaine use. [14] It can be given orally (by mouth), transdermally (on the skin via a topical gel or patch), intravenously (IV) (injection into a vein), or intramuscularly (injection into a muscle.) [14] When given by injection, onset of effects is between one and thirty minutes and effects last for up to a day. [14]

Contents

Common side effects include weakness, sleepiness, ataxia, decreased alertness, decreased memory formation, low blood pressure, and a decreased effort to breathe. [14] When given intravenously, the person should be closely monitored. [14] Among those who are depressed, there may be an increased risk of suicide. [14] [19] With long-term use, larger doses may be required for the same effect. [14] Physical dependence and psychological dependence may also occur. [14] If stopped suddenly after long-term use, benzodiazepine withdrawal syndrome may occur. [14] Older people more often develop adverse effects. [20] In this age group, lorazepam is associated with falls and hip fractures. [21] Due to these concerns, lorazepam use is generally only recommended for up to two to four weeks. [22]

Lorazepam was initially patented in 1963 and went on sale in the United States in 1977. [23] [24] It is on the World Health Organization's List of Essential Medicines. [25] It is available as a generic medication. [14] In 2022, it was the 80th most commonly prescribed medication in the United States, with more than 8 million prescriptions. [26] [27]

Medical uses

Anxiety

Lorazepam is used in the short-term management of severe anxiety. In the US, the Food and Drug Administration (FDA) advises against use of benzodiazepines such as lorazepam for longer than four weeks. [22] [28] It is fast-acting, and useful in treating fast-onset anxiety and panic attacks. [29]

Lorazepam can effectively reduce agitation and induce sleep, and the duration of effects from a single dose makes it an appropriate choice for the short-term treatment of insomnia, especially in the presence of severe anxiety or night terrors. It has a fairly short duration of action. [30]

Withdrawal symptoms, including rebound insomnia and rebound anxiety, may occur after seven days' use of lorazepam. [31]

Seizures

Lorazepam 3mg scored tablets in a blister pack. Lorazepam-3mg.jpg
Lorazepam 3mg scored tablets in a blister pack.

Intravenous diazepam or lorazepam are first-line treatments for convulsive status epilepticus. [32] Lorazepam is more effective than diazepam and intravenous phenytoin in the treatment of status epilepticus and has a lower risk of continuing seizures that might require additional medication. [33] However, phenobarbital has a superior success rate compared to lorazepam and other drugs, at least in the elderly. [34] [35]

Lorazepam's anticonvulsant properties and pharmacokinetic profile make intravenous use reliable for terminating acute seizures, but induce prolonged sedation. Orally administered benzodiazepines, including lorazepam, are occasionally used as long-term prophylactic treatment of resistant absence seizures; because of gradual tolerance to their anti-seizure effects, benzodiazepines are not considered first-line therapies. Additionally, common seizure characteristics (e.g, hypersalivation, jaw-clenching, involuntary swallowing) pose some difficulties with regard to oral administration. [36] [37]

Lorazepam's anticonvulsant and central nervous system (CNS) depressant properties are useful for the treatment and prevention of alcohol withdrawal syndrome. In this setting, impaired liver function is not a hazard with lorazepam, since lorazepam does not require oxidation, in the liver or otherwise, for its metabolism. Lorazepam is noted as being the most tolerable benzodiazepine in those with advanced-stage liver disease. [38] [39] [40]

Sedation

Lorazepam is sometimes used for individuals receiving mechanical ventilation. However, in critically ill people, propofol has been found to be superior to lorazepam both in effectiveness and overall cost; as a result, the use of propofol for this indication is now encouraged, whereas the use of lorazepam is discouraged. [41]

Its relative effectiveness in preventing new memory formation, [42] along with its ability to reduce agitation and anxiety, makes lorazepam useful as premedication. It is given before a general anesthetic to reduce the amount of anesthetic required, or before unpleasant awake procedures, such as in dentistry or endoscopies, to reduce anxiety, increase compliance, and induce amnesia for the procedure. Lorazepam by mouth is given 90 to 120 minutes before procedures, and intravenous lorazepam is given as late as 10 minutes before procedures. [43] [44] [45] Lorazepam is sometimes used as an alternative to midazolam in palliative sedation. [46] In intensive care units, lorazepam is sometimes used to produce anxiolysis, hypnosis, and amnesia. [47]

Agitation

Lorazepam is sometimes used as an alternative to haloperidol when there is the need for rapid sedation of violent or agitated individuals, [48] [49] but haloperidol plus promethazine is preferred due to better effectiveness and due to lorazepam's adverse effects on respiratory function. [50] However, adverse effects such as behavioral disinhibition may make benzodiazepines inappropriate for some people who are acutely psychotic. [51] Acute delirium is sometimes treated with lorazepam, but as it can cause paradoxical effects, it is preferably given together with haloperidol. [52] Lorazepam is absorbed relatively slowly if given intramuscularly, a common route in restraint situations.

Other

Catatonia with inability to speak is responsive to lorazepam. Symptoms may recur and treatment for some days may be necessary. Catatonia due to abrupt or overly rapid withdrawal from benzodiazepines, as part of the benzodiazepine withdrawal syndrome, should also respond to lorazepam treatment. [53] As lorazepam can have paradoxical effects, haloperidol is sometimes given at the same time. [52] [54]

It is sometimes used in chemotherapy in addition to medications used to treat nausea and vomiting (i.e., nausea and vomiting caused or worsened by psychological sensitization to the thought of being sick). [55]

Adverse effects

Many beneficial effects of lorazepam (e.g., sedative, muscle relaxant, anti-anxiety, and amnesic effects) may become adverse effects when unwanted. [42] Adverse effects can include sedation and low blood pressure; the effects of lorazepam are increased in combination with other CNS depressants. [32] [48] Other adverse effects include confusion, ataxia, inhibiting the formation of new memories, pupil constriction, and hangover effects. With long-term benzodiazepine use, it is unclear whether cognitive impairments fully return to normal after stopping lorazepam use; cognitive deficits persist for at least six months after withdrawal, but longer than six months may be required for recovery of cognitive function. Lorazepam appears to have more profound adverse effects on memory than other benzodiazepines; it impairs both explicit and implicit memory. [56] [57] In the elderly, falls may occur as a result of benzodiazepines. Adverse effects are more common in the elderly, and they appear at lower doses than in younger people. Benzodiazepines can cause or worsen depression. Paradoxical effects can also occur, such as worsening of seizures, or paradoxical excitement; paradoxical excitement is more likely to occur in the elderly, children, those with a history of alcohol abuse, and in people with a history of aggression or anger problems. [20] Lorazepam's effects are dose-dependent, meaning the higher the dose, the stronger the effects (and side effects) will be. Using the smallest dose needed to achieve desired effects lessens the risk of adverse effects. Sedative drugs and sleeping pills, including lorazepam, have been associated with an increased risk of death. [58]

Sedation is the side effect people taking lorazepam most frequently report. In a group of around 3,500 people treated for anxiety, the most common side effects complained of from lorazepam were sedation (15.9%), dizziness (6.9%), weakness (4.2%), and unsteadiness (3.4%). Side effects such as sedation and unsteadiness increased with age. [59] Cognitive impairment, behavioral disinhibition and respiratory depression as well as hypotension may also occur. [47] [51]

In September 2020, the U.S. Food and Drug Administration (FDA) required the boxed warning be updated for all benzodiazepine medicines to describe the risks of abuse, misuse, addiction, physical dependence, and withdrawal reactions consistently across all the medicines in the class. [70]

Contraindications

Lorazepam should be avoided in people with:

Specific groups

Tolerance and dependence

Dependence typified by a withdrawal syndrome occurs in about one-third of individuals who are treated for longer than four weeks with a benzodiazepine. Higher doses and longer periods of use increase the risk of developing a benzodiazepine dependence. Potent benzodiazepines with a relatively short half-life, such as lorazepam, alprazolam, and triazolam, have the highest risk of causing dependence. [20]

If regular treatment is continued for longer than four to six months, dose increases may be necessary to maintain effects, but treatment-resistant symptoms may in fact be benzodiazepine withdrawal symptoms. [77] Due to the development of tolerance to the anticonvulsant effects, benzodiazepines are generally not recommended for long-term use for the management of epilepsy. Increasing the dose may overcome tolerance, but tolerance may then develop to the higher dose and adverse effects may persist and worsen. The mechanism of tolerance to benzodiazepines is complex and involves GABAA receptor downregulation, alterations to subunit configuration of GABAA receptors, uncoupling, and internalization of the benzodiazepine binding site from the GABAA receptor complex as well as changes in gene expression. [20]

The likelihood of dependence is relatively high with lorazepam compared to other benzodiazepines. Lorazepam's relatively short serum half-life, its confinement mainly to blood, and its inactive metabolite can result in interdose withdrawal phenomena and next-dose cravings, that may reinforce psychological dependence. Because of its high potency, the smallest lorazepam tablet strength of 0.5 mg is also a significant dose. To minimise the risk of physical/psychological dependence, lorazepam is best used only short-term, at the smallest effective dose. If any benzodiazepine has been used long-term, the recommendation is a gradual dose taper over a period of weeks, months or longer, according to dose and duration of use, the degree of dependence and the individual.

Coming off long-term lorazepam use may be more realistically achieved by a gradual switch to an equivalent dose of diazepam and a period of stabilization on this, and only then initiating dose reductions. The advantage of switching to diazepam is that dose reductions are felt less acutely, because of the longer half-lives (20–200 hours) of diazepam and its active metabolites. [78]

Withdrawal

On abrupt or overly rapid discontinuation of lorazepam, anxiety, and signs of physical withdrawal have been observed, similar to those seen on withdrawal from alcohol and barbiturates. Lorazepam, as with other benzodiazepine drugs, can cause physical dependence, addiction, and benzodiazepine withdrawal syndrome. The higher the dose and the longer the drug is taken, the greater the risk of experiencing unpleasant withdrawal symptoms. Withdrawal symptoms can, however, occur from standard dosages and also after short-term use. Benzodiazepine treatment should be discontinued as soon as possible via a slow and gradual dose reduction regimen. [79] Rebound effects often resemble the condition being treated, but typically at a more intense level and may be difficult to diagnose. Withdrawal symptoms can range from mild anxiety and insomnia to more severe symptoms such as seizures and psychosis. The risk and severity of withdrawal are increased with long-term use, use of high doses, abrupt or over-rapid reduction, among other factors. Short-acting benzodiazepines such as lorazepam are more likely to cause a more severe withdrawal syndrome compared to longer-acting benzodiazepines. [20]

Withdrawal symptoms can occur after taking therapeutic doses of lorazepam for as little as one week.[ citation needed ] Withdrawal symptoms include headaches, anxiety, tension, depression, insomnia, restlessness, confusion, irritability, sweating, dysphoria, dizziness, derealization, depersonalization, numbness/tingling of extremities, hypersensitivity to light, sound, and smell, perceptual distortions, nausea, vomiting, diarrhea, appetite loss, hallucinations, delirium, seizures, tremor, stomach cramps, myalgia, agitation, palpitations, tachycardia, panic attacks, short-term memory loss, and hyperthermia. It takes about 18–36 hours for the benzodiazepine to be removed from the body. [80] The ease of physical dependence to lorazepam, (Ativan brand was particularly cited), and its withdrawal were brought to the attention of the British public during the early 1980s in Esther Rantzen's BBC TV series That's Life! , in a feature on the drug over a number of episodes.

Interactions

Lorazepam is not usually fatal in overdose, but may cause respiratory depression if taken in overdose with alcohol. The combination also causes greater enhancement of the disinhibitory and amnesic effects of both drugs, with potentially embarrassing or criminal consequences. Some experts advise that people should be warned against drinking alcohol while on lorazepam treatment, [42] [81] but such clear warnings are not universal. [82]

Greater adverse effects may also occur when lorazepam is used with other drugs, such as opioids or other hypnotics. [76] Lorazepam may also interact with rifabutin. [83] Valproate inhibits the metabolism of lorazepam, whereas carbamazepine, lamotrigine, phenobarbital, phenytoin, and rifampin increase its rate of metabolism. Some antidepressants, antiepileptic drugs such as phenobarbital, phenytoin and carbamazepine, sedative antihistamines, opiates, antipsychotics and alcohol, when taken with lorazepam may result in enhanced sedative effects. [20]

Overdose

In cases of a suspected lorazepam overdose, it is important to establish whether the person is a regular user of lorazepam or other benzodiazepines since regular use causes tolerance to develop. Also, one must ascertain whether other substances were also ingested.

Signs of overdose range through mental confusion, dysarthria, paradoxical reactions, drowsiness, hypotonia, ataxia, hypotension, hypnotic state, coma, cardiovascular depression, respiratory depression, and death. However, fatal overdoses on benzodiazepines alone are rare and less common than with barbiturates. [84] Such a difference is largely due to benzodiazepine activity as a neuroreceptor modulator, and not as an activator per se. Lorazepam and similar medications do however act in synergy with alcohol, which increases the risk of overdose.

Early management of people under alert includes emetics, gastric lavage, and activated charcoal. Otherwise, management is by observation, including of vital signs, support and, only if necessary, considering the hazards of doing so, giving intravenous flumazenil.

People are ideally nursed in a kind, frustration-free environment, since, when given or taken in high doses, benzodiazepines are more likely to cause paradoxical reactions. If shown sympathy, even quite crudely feigned, people may respond solicitously, but they may respond with disproportionate aggression to frustrating cues. [85] Opportunistic counseling has limited value here, as the person is unlikely to recall this later, owing to drug-induced anterograde amnesia.

Detection in body fluids

Lorazepam may be quantitated in blood or plasma to confirm poisoning in hospitalized people, provide evidence of an impaired driving arrest or to assist in a medicolegal death investigation. Blood or plasma concentrations are usually in a range of 10–300 μg/L in persons either receiving the drug therapeutically or in those arrested for impaired driving. Approximately 300–1000 μg/L is found in people after acute overdosage. [86] Lorazepam may not be detected by commonly used urine drug screenings for benzodiazepines. This is due to the fact that the majority of these screening tests are only able to detect benzodiazepines that undergo oxazepam glucuronide metabolism. [87] [88] [89]

Pharmacology

Lorazepam has anxiolytic, sedative, hypnotic, amnesic, anticonvulsant, and muscle relaxant properties. [90] It is a high-potency and an intermediate-acting[ clarification needed ] benzodiazepine, and its uniqueness, [91] [92] advantages, and disadvantages are largely explained by its pharmacokinetic properties (poor water and lipid solubility, high protein binding and anoxidative metabolism to a pharmacologically inactive glucuronide form) and by its high relative potency (lorazepam 1 mg is equal in effect to diazepam 10 mg). [93] [94] The biological half-life of lorazepam is 10–20 hours. [95]

Pharmacokinetics

Lorazepam is highly protein bound and is extensively metabolized into pharmacologically inactive metabolites. [20] Due to its poor lipid solubility, lorazepam is absorbed relatively slowly by mouth and is unsuitable for rectal administration. However, its poor lipid solubility and high degree of protein binding (85–90% [96] ) mean its volume of distribution is mainly the vascular compartment, causing relatively prolonged peak effects. This contrasts with the highly lipid-soluble diazepam, which, although rapidly absorbed orally or rectally, soon redistributes from the serum to other parts of the body, in particular, body fat. This explains why one lorazepam dose, despite its shorter serum half-life, has more prolonged peak effects than an equivalent diazepam dose. [97] Lorazepam is rapidly conjugated at its 3-hydroxy group into lorazepam glucuronide which is then excreted in the urine. Lorazepam glucuronide has no demonstrable CNS activity in animals. The plasma levels of lorazepam are proportional to the dose given. There is no evidence of accumulation of lorazepam on administration up to six months. On regular administration, diazepam will accumulate, since it has a longer half-life and active metabolites, these metabolites also have long half-lives.

Clinical example: Diazepam has long been a drug of choice for status epilepticus; its high lipid solubility means it gets absorbed with equal speed whether given orally, or rectally (nonintravenous routes are convenient outside of hospital settings), but diazepam's high lipid solubility also means it does not remain in the vascular space, but soon redistributes into other body tissues. So, it may be necessary to repeat diazepam doses to maintain peak anticonvulsant effects, resulting in excess body accumulation. Lorazepam is a different case; its low lipid solubility makes it relatively slowly absorbed by any route other than intravenously, but once injected, it will not get significantly redistributed beyond the vascular space. Therefore, lorazepam's anticonvulsant effects are more durable, thus reducing the need for repeated doses. If a person is known to usually stop convulsing after only one or two diazepam doses, it may be preferable because sedative after effects will be less than if a single dose of lorazepam is given (diazepam anticonvulsant/sedative effects wear off after 15–30 minutes, but lorazepam effects last 12–24 hours). [98] The prolonged sedation from lorazepam may, however, be an acceptable trade-off for its reliable duration of effects, particularly if the person needs to be transferred to another facility. Although lorazepam is not necessarily better than diazepam at initially terminating seizures, [99] lorazepam is, nevertheless, replacing diazepam as the intravenous agent of choice in status epilepticus. [100] [101]

Lorazepam serum levels are proportional to the dose administered. Giving 2 mg oral lorazepam will result in a peak total serum level of around 20 ng/mL around two hours later, [96] [102] half of which is lorazepam, half its inactive metabolite, lorazepam-glucuronide. [103] A similar lorazepam dose given intravenously will result in an earlier and higher peak serum level, with a higher relative proportion of unmetabolised (active) lorazepam. [104] On regular administration, maximum serum levels are attained after three days. Longer-term use, up to six months, does not result in further accumulation. [96] On discontinuation, lorazepam serum levels become negligible after three days and undetectable after about a week. Lorazepam is metabolized in the liver by conjugation into inactive lorazepam-glucuronide. This metabolism does not involve liver oxidation, so is relatively unaffected by reduced liver function. Lorazepam-glucuronide is more water-soluble than its precursor, so gets more widely distributed in the body, leading to a longer half-life than lorazepam. Lorazepam-glucuronide is eventually excreted by the kidneys, [96] and, because of its tissue accumulation, it remains detectable, particularly in the urine, for substantially longer than lorazepam.

Pharmacodynamics

Relative to other benzodiazepines, lorazepam is thought to have high affinity for GABA receptors, [105] which may also explain its marked amnesic effects. [42] Its main pharmacological effects are the enhancement of the effects of the neurotransmitter GABA at the GABAA receptor. [20] Benzodiazepines, such as lorazepam, enhance the effects of GABA at the GABAA receptor via increasing the frequency of opening of the chloride ion channel on the GABAA receptors; which results in the therapeutic actions of benzodiazepines. They, however, do not on their own activate the GABAA receptors, but require the neurotransmitter GABA to be present. Thus, the effect of benzodiazepines is to enhance the effects of the neurotransmitter GABA. [20] [76]

The magnitude and duration of lorazepam effects are dose-related, meaning larger doses have stronger and longer-lasting effects, because the brain has spare benzodiazepine drug receptor capacity, with single, clinical doses leading only to an occupancy of some 3% of the available receptors. [106]

The anticonvulsant properties of lorazepam and other benzodiazepines may be, in part or entirely, due to binding to voltage-dependent sodium channels rather than benzodiazepine receptors. Sustained repetitive firing seems to get limited, by the benzodiazepine effect of slowing recovery of sodium channels from inactivation to deactivation in mouse spinal cord cell cultures, hence prolonging the refractory period. [107]

Physical properties and formulations

0.5 mg tablets of the Ativan brand of lorazepam Ativan05mg.jpg
0.5 mg tablets of the Ativan brand of lorazepam

Pure lorazepam is an almost white powder that is nearly insoluble in water and oil. In medicinal form, it is mainly available as tablets and a solution for injection, but, in some locations, it is also available as a skin patch, an oral solution, and a sublingual tablet.

Lorazepam tablets and syrups are administered orally. Lorazepam tablets of the Ativan brand also contain lactose, microcrystalline cellulose, polacrilin, magnesium stearate, and coloring agents (indigo carmine in blue tablets and tartrazine in yellow tablets). Lorazepam for injection formulated with polyethylene glycol 400 in propylene glycol with 2.0% benzyl alcohol as preservative.

Lorazepam injectable solution is administered either by deep intramuscular injection or by intravenous injection. The injectable solution comes in 1 mL ampoules containing 2 or 4 mg of lorazepam. The solvents used are polyethylene glycol 400 and propylene glycol. As a preservative, the injectable solution contains benzyl alcohol. [108] Toxicity from propylene glycol has been reported in the case of a person receiving a continuous lorazepam infusion. [109] Intravenous injections should be given slowly and they should be closely monitored for side effects, such as respiratory depression, hypotension, or loss of airway control.

Peak effects roughly coincide with peak serum levels, [102] which occur 10 minutes after intravenous injection, up to 60 minutes after intramuscular injection, and 90 to 120 minutes after oral administration, [96] [102] but initial effects will be noted before this. A clinically relevant lorazepam dose will normally be effective for six to 12 hours, making it unsuitable for regular once-daily administration, so it is usually prescribed as two to four daily doses when taken regularly, but this may be extended to five or six, especially in the case of elderly people who could not handle large doses at once.

Topical formulations of lorazepam, while sometimes used as treatment for nausea especially in people in hospice, has been advised against by the American Academy of Hospice and Palliative Medicine for this purpose as it has not been proven effective. [110]

History

1987 advertisement. "In a world where certainties are few...no wonder Ativan is prescribed by so many caring clinicians." AtivanAd.jpg
1987 advertisement. "In a world where certainties are few...no wonder Ativan is prescribed by so many caring clinicians."

Historically, lorazepam is one of the "classical" benzodiazepines. Others include diazepam, clonazepam, oxazepam, nitrazepam, flurazepam, bromazepam, and clorazepate. [111] Lorazepam was first introduced by Wyeth Pharmaceuticals in 1977 under the brand names Ativan and Temesta. [112] The drug was developed by D.J. Richards, president of research. Wyeth's original patent on lorazepam is expired in the United States.

Society and culture

Recreational use

Lorazepam is also used for other purposes, such as recreational drug use, wherein it is taken to achieve a high, or when the medication is continued long-term against medical advice. [113]

A 2006 large-scale, nationwide, US government study of pharmaceutical-related emergency department visits by SAMHSA found sedative-hypnotics are the pharmaceuticals most frequently used outside of their prescribed medical purpose in the United States, with 35% of drug-related emergency department visits involving sedative-hypnotics. In this category, benzodiazepines are most commonly used. Males and females use benzodiazepines for nonmedical purposes equally. Of drugs used in attempted suicide, benzodiazepines are the most commonly used pharmaceutical drugs, with 26% of attempted suicides involving them. Lorazepam was the third-most-common benzodiazepine used outside of prescription in these ER visit statistics. [114]

Lorazepam is a Schedule IV drug under the Controlled Substances Act in the US and internationally under the United Nations Convention on Psychotropic Substances. [115] It is a Schedule IV drug under the Controlled Drugs and Substances Act in Canada. In the United Kingdom, it is a Class C, Schedule 4 Controlled Drug under the Misuse of Drugs Regulations 2001. [116]

Pricing

In 2000, the US drug company Mylan agreed to pay US$147 million to settle accusations by the Federal Trade Commission (FTC) that they had raised the price of generic lorazepam by 2600% and generic clorazepate by 3200% in 1998 after having obtained exclusive licensing agreements for certain ingredients. [117]

Related Research Articles

<span class="mw-page-title-main">Benzodiazepine</span> Class of depressant drugs

Benzodiazepines, colloquially known as "benzos", are a class of depressant drugs whose core chemical structure is the fusion of a benzene ring and a diazepine ring. They are prescribed to treat conditions such as anxiety disorders, insomnia, and seizures. The first benzodiazepine, chlordiazepoxide (Librium), was discovered accidentally by Leo Sternbach in 1955, and was made available in 1960 by Hoffmann–La Roche, which followed with the development of diazepam (Valium) three years later, in 1963. By 1977, benzodiazepines were the most prescribed medications globally; the introduction of selective serotonin reuptake inhibitors (SSRIs), among other factors, decreased rates of prescription, but they remain frequently used worldwide.

<span class="mw-page-title-main">Diazepam</span> Benzodiazepine sedative

Diazepam, sold under the brand name Valium among others, is a medicine of the benzodiazepine family that acts as an anxiolytic. It is used to treat a range of conditions, including anxiety, seizures, alcohol withdrawal syndrome, muscle spasms, insomnia, and restless legs syndrome. It may also be used to cause memory loss during certain medical procedures. It can be taken orally, as a suppository inserted into the rectum, intramuscularly, intravenously or used as a nasal spray. When injected intravenously, effects begin in one to five minutes and last up to an hour. When taken by mouth, effects begin after 15 to 60 minutes.

<span class="mw-page-title-main">Temazepam</span> Insomnia medication

Temazepam, sold under the brand name Restoril among others, is a medication of the benzodiazepine class which is generally used to treat severe or debilitating insomnia. It is taken by mouth. Temazepam is rapidly absorbed, and significant hypnotic effects begin in less than 30 minutes and can last for up to eight hours. Prescriptions for hypnotics such as temazepam have seen a dramatic decrease since 2010, while anxiolytics such as alprazolam, clonazepam, and lorazepam have increased or remained stable. Temazepam and similar hypnotics, such as triazolam (Halcion) are generally reserved for severe and debilitating insomnia. They have largely been replaced by z-drugs and atypical antidepressants as first line treatment for insomnia.

<span class="mw-page-title-main">Alprazolam</span> Benzodiazepine medication

Alprazolam, sold under the brand name Xanax and others, is a fast-acting, potent tranquilizer of moderate duration within the triazolobenzodiazepine group of chemicals called benzodiazepines. Alprazolam is most commonly prescribed in the management of anxiety disorders, especially panic disorder and generalized anxiety disorder (GAD). Other uses include the treatment of chemotherapy-induced nausea, together with other treatments. GAD improvement occurs generally within a week. Alprazolam is generally taken orally.

<span class="mw-page-title-main">Midazolam</span> Benzodiazepine used for anesthesia and procedural sedation

Midazolam, sold under the brand name Versed among others, is a benzodiazepine medication used for anesthesia, premedication before surgical anesthesia, and procedural sedation, and to treat severe agitation. It induces sleepiness, decreases anxiety, and causes anterograde amnesia.

<span class="mw-page-title-main">Clonazepam</span> Benzodiazepine medication

Clonazepam, sold under the brand name Klonopin among others, is a benzodiazepine medication used to prevent and treat anxiety disorders, seizures, bipolar mania, agitation associated with psychosis, obsessive–compulsive disorder (OCD), and akathisia. It is a long-acting tranquilizer of the benzodiazepine class. It possesses anxiolytic, anticonvulsant, sedative, hypnotic, and skeletal muscle relaxant properties. It is typically taken orally but is also used intravenously. Effects begin within one hour and last between eight and twelve hours in adults.

<span class="mw-page-title-main">Bromazepam</span> Benzodiazepine drug

Bromazepam, sold under many brand names, is a benzodiazepine. It is mainly an anti-anxiety agent with similar side effects to diazepam. In addition to being used to treat anxiety or panic states, bromazepam may be used as a premedicant prior to minor surgery. Bromazepam typically comes in doses of 3 mg and 6 mg tablets.

<span class="mw-page-title-main">Flurazepam</span> Hypnotic medication

Flurazepam is a drug which is a benzodiazepine derivative. It possesses anxiolytic, anticonvulsant, hypnotic, sedative and skeletal muscle relaxant properties. It produces a metabolite with a long half-life, which may stay in the bloodstream for days. Flurazepam was patented in 1968 and came into medical use the same year. Flurazepam, developed by Roche Pharmaceuticals, was one of the first benzodiazepine hypnotic medications to be marketed.

<span class="mw-page-title-main">Oxazepam</span> Benzodiazepine medication

Oxazepam is a short-to-intermediate-acting benzodiazepine. Oxazepam is used for the treatment of anxiety, insomnia, and to control symptoms of alcohol withdrawal syndrome.

<span class="mw-page-title-main">Nonbenzodiazepine</span> Class of psychoactive drugs

Nonbenzodiazepines, sometimes referred to colloquially as Z-drugs, are a class of psychoactive, depressant, sedative, hypnotic, anxiolytic drugs that are benzodiazepine-like in uses, such as for treating insomnia and anxiety.

<span class="mw-page-title-main">Nordazepam</span> Benzodiazepine derivative medication

Nordazepam is a 1,4-benzodiazepine derivative. Like other benzodiazepine derivatives, it has amnesic, anticonvulsant, anxiolytic, muscle relaxant, and sedative properties. However, it is used primarily in the treatment of anxiety disorders. It is an active metabolite of diazepam, chlordiazepoxide, clorazepate, prazepam, pinazepam, and medazepam.

<span class="mw-page-title-main">Clorazepate</span> Benzodiazepine medication

Clorazepate, sold under the brand name Tranxene among others, is a benzodiazepine medication. It possesses anxiolytic, anticonvulsant, sedative, hypnotic, and skeletal muscle relaxant properties. Clorazepate is an unusually long-lasting benzodiazepine and serves as a prodrug for the equally long-lasting desmethyldiazepam, which is rapidly produced as an active metabolite. Desmethyldiazepam is responsible for most of the therapeutic effects of clorazepate.

<span class="mw-page-title-main">Loprazolam</span> Benzodiazepine

Loprazolam (triazulenone) marketed under many brand names is a benzodiazepine medication. It possesses anxiolytic, anticonvulsant, hypnotic, sedative and skeletal muscle relaxant properties. It is licensed and marketed for the short-term treatment of moderately-severe insomnia.

<span class="mw-page-title-main">Lormetazepam</span> Benzodiazepine medication

Lormetazepam, sold under the brand name Noctamid among others, is a drug which is a short to intermediate acting 3-hydroxy benzodiazepine derivative and temazepam analogue. It possesses hypnotic, anxiolytic, anticonvulsant, sedative, and skeletal muscle relaxant properties.

<span class="mw-page-title-main">Benzodiazepine withdrawal syndrome</span> Signs and symptoms due to benzodiazepine discontinuation in physically dependent persons

Benzodiazepine withdrawal syndrome is the cluster of signs and symptoms that may emerge when a person who has been taking benzodiazepines as prescribed develops a physical dependence on them and then reduces the dose or stops taking them without a safe taper schedule.

<span class="mw-page-title-main">Delorazepam</span> Benzodiazepine medication

Delorazepam, also known by the synonyms chlordesmethyldiazepam and nordiclazepam, is a drug which is a benzodiazepine and a derivative of desmethyldiazepam. It is marketed in Italy, where it is available under the trade name EN and Dadumir. Delorazepam (chlordesmethyldiazepam) is also an active metabolite of the benzodiazepine drugs diclazepam and cloxazolam. Adverse effects may include hangover type effects, drowsiness, behavioural impairments and short-term memory impairments. Similar to other benzodiazepines delorazepam has anxiolytic, skeletal muscle relaxant, hypnotic and anticonvulsant properties.

<span class="mw-page-title-main">Alcohol detoxification</span> Abrupt cessation of alcohol intake

Alcohol detoxification is the abrupt cessation of alcohol intake in individuals that have alcohol use disorder. This process is often coupled with substitution of drugs that have effects similar to the effects of alcohol in order to lessen the symptoms of alcohol withdrawal. When withdrawal does occur, it results in symptoms of varying severity.

<span class="mw-page-title-main">Benzodiazepine dependence</span> Medical condition

Benzodiazepine dependence defines a situation in which one has developed one or more of either tolerance, withdrawal symptoms, drug seeking behaviors, such as continued use despite harmful effects, and maladaptive pattern of substance use, according to the DSM-IV. In the case of benzodiazepine dependence, the continued use seems to be typically associated with the avoidance of unpleasant withdrawal reaction rather than with the pleasurable effects of the drug. Benzodiazepine dependence develops with long-term use, even at low therapeutic doses, often without the described drug seeking behavior and tolerance.

<span class="mw-page-title-main">Benzodiazepine use disorder</span> Medical condition

Benzodiazepine use disorder (BUD), also called misuse or abuse, is the use of benzodiazepines without a prescription and/or for recreational purposes, which poses risks of dependence, withdrawal and other long-term effects. Benzodiazepines are one of the more common prescription drugs used recreationally. When used recreationally benzodiazepines are usually administered orally but sometimes they are taken intranasally or intravenously. Recreational use produces effects similar to alcohol intoxication.

References

  1. "Lorazepam". The Drug Gene Interaction Database. Archived from the original on 5 August 2016. Retrieved 18 May 2016.
  2. Edmunds M, Mayhew M (2013). Pharmacology for the Primary Care Provider (4th ed.). Mosby. p. 545. ISBN   978-0-323-08790-2. Archived from the original on 14 January 2023. Retrieved 13 July 2020.
  3. Clinical Addiction Psychiatry. Cambridge University Press. 2010. p. 156. ISBN   978-1-139-49169-3. Archived from the original on 8 September 2017.
  4. Ries RK (2009). Principles of addiction medicine (4 ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins. p. 106. ISBN   978-0-7817-7477-2. Archived from the original on 8 September 2017.
  5. https://www.tga.gov.au/resources/prescription-medicines-registrations/lorazepam-aft-aft-pharmaceuticals-pty-ltd
  6. Anvisa (31 March 2023). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 4 April 2023). Archived from the original on 3 August 2023. Retrieved 16 August 2023.
  7. "Lorazepam Macure 4mg/ml solution for injection Summary of Product Characteristics (SmPC)". (emc). 22 April 2021. Retrieved 7 September 2024.
  8. "Lorazepam Aristo 1 mg tablets Summary of Product Characteristics (SmPC)". (emc). 9 March 2020. Retrieved 7 September 2024.
  9. "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA . Retrieved 22 October 2023.
  10. "Ativan- lorazepam tablet". DailyMed. 13 January 2023. Retrieved 7 September 2024.
  11. "Ativan- lorazepam injection". DailyMed. 7 April 2023. Retrieved 7 September 2024.
  12. "Loreev XR- lorazepam capsule, extended release". DailyMed. 20 January 2023. Retrieved 7 September 2024.
  13. "Lorazepam Macure 4 mg/ml, solution for injection". European Medicines Agency (EMA). 27 June 2024. Retrieved 7 September 2024.
  14. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "Lorazepam". drugs.com. American Society of Health-System Pharmacists. 29 June 2016. Archived from the original on 5 June 2016. Retrieved 15 July 2016.
  15. Greenblatt DJ, Shader RI, Franke K, Maclaughlin DS, Harmatz JS, Allen MD, et al. (1991). "Pharmacokinetics and bioavailability of intravenous, intramuscular, and oral lorazepam in humans". Journal of Pharmaceutical Sciences. 68 (1): 57–63. doi:10.1002/jps.2600680119. PMID   31453.
  16. Greenblatt DJ, von Moltke LL, Ehrenberg BL, Harmatz JS, Corbett KE, Wallace DW, et al. (2000). "Kinetics and dynamics of lorazepam during and after continuous intravenous infusion". Critical Care Medicine. 28 (8): 2750–2757. doi:10.1097/00003246-200008000-00011. PMID   10966246. S2CID   42138460.
  17. Papini O, da Cunha SP, da Silva Mathes Ado C, Bertucci C, Moisés EC, de Barros Duarte L, et al. (2006). "Kinetic disposition of lorazepam with a focus on the glucuronidation capacity, transplacental transfer in parturients and racemization in biological samples". Journal of Pharmaceutical and Biomedical Analysis. 40 (2): 397–403. doi:10.1016/j.jpba.2005.07.021. PMID   16143486.
  18. "Lorazepam: MedlinePlus Drug Information". medlineplus.gov. 1 October 2010. Archived from the original on 19 August 2016. Retrieved 16 July 2016.
  19. 1 2 Dodds TJ (March 2017). "Prescribed Benzodiazepines and Suicide Risk: A Review of the Literature". The Primary Care Companion for CNS Disorders. 19 (2). doi: 10.4088/PCC.16r02037 . PMID   28257172.
  20. 1 2 3 4 5 6 7 8 9 10 Riss J, Cloyd J, Gates J, Collins S (2008). "Benzodiazepines in epilepsy: pharmacology and pharmacokinetics". Acta Neurologica Scandinavica. 118 (2): 69–86. doi:10.1111/j.1600-0404.2008.01004.x. PMID   18384456. S2CID   24453988.
  21. 1 2 Mets MA, Volkerts ER, Olivier B, Verster JC (2010). "Effect of hypnotic drugs on body balance and standing steadiness". Sleep Medicine Reviews. 14 (4): 259–267. doi:10.1016/j.smrv.2009.10.008. PMID   20171127.
  22. 1 2 "Ativan (lorazepam) Tablets Rx only" (PDF). Food and Drug Administration. March 2007. Archived (PDF) from the original on 17 September 2011. In general, benzodiazepines should be prescribed for short periods only (e.g. 2–4 weeks). Extension of the treatment period should not take place without reevaluation of the need for continued therapy. Continuous long-term use of product is not recommended.
  23. Shorter E (2005). "B". A Historical Dictionary of Psychiatry. Oxford University Press. ISBN   978-0-19-029201-0. Archived from the original on 28 March 2017.
  24. USpatent 3296249,Stanley C. Bell,"5-monocyclic aryl-1, 3-dihydro-2h-1, 4-benzodiazepin-2-ones",published 1967-01-03,issued 1967-01-03, assigned to American Home Products
  25. World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl: 10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  26. "The Top 300 of 2022". ClinCalc. Archived from the original on 30 August 2024. Retrieved 30 August 2024.
  27. "Lorazepam Drug Usage Statistics, United States, 2013 - 2022". ClinCalc. Retrieved 30 August 2024.
  28. Rabin RC (25 August 2009). "Disparities: Study Finds Risk in Off-Label Prescribing". The New York Times . p. D6. Archived from the original on 19 February 2017.
  29. Lader M (1984). "Short-term versus long-term benzodiazepine therapy". Current Medical Research and Opinion. 8 (Suppl 4): 120–126. doi:10.1185/03007998409109550. PMID   6144459.
  30. Aschenbrenner DS, Venable SJ (2009). Drug Therapy in Nursing (3rd ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p.  273. ISBN   978-0-7817-6587-9. OCLC   173659630. Archived from the original on 19 April 2016.
  31. Scharf MB, Kales A, Bixler EO, Jacoby JA, Schweitzer PK (1982). "Lorazepam-efficacy, side effects, and rebound phenomena". Clinical Pharmacology and Therapeutics. 31 (2): 175–179. doi:10.1038/clpt.1982.27. PMID   6120058. S2CID   464310.
  32. 1 2 Walker M (2005). "Status epilepticus: an evidence based guide". BMJ. 331 (7518): 673–677. doi:10.1136/bmj.331.7518.673. PMC   1226249 . PMID   16179702.
  33. Prasad M, Krishnan PR, Sequeira R, Al-Roomi K (September 2014). "Anticonvulsant therapy for status epilepticus". The Cochrane Database of Systematic Reviews. 2014 (9): CD003723. doi:10.1002/14651858.CD003723.pub3. PMC   7154380 . PMID   25207925.
  34. Treiman DM, Walker MC (2006). "Treatment of seizure emergencies: convulsive and non-convulsive status epilepticus". Epilepsy Research. 68 (Suppl 1): S77–S82. doi:10.1016/j.eplepsyres.2005.07.020. PMID   16384688. S2CID   22205104.
  35. Treiman DM (2007). "Treatment of convulsive status epilepticus". The Neurobiology of Epilepsy and Aging. International Review of Neurobiology. Vol. 81. pp.  273–285. doi:10.1016/S0074-7742(06)81018-4. ISBN   978-0-12-374018-2. PMID   17433931. S2CID   24523838.
  36. Isojärvi JI, Tokola RA (December 1998). "Benzodiazepines in the treatment of epilepsy in people with intellectual disability". Journal of Intellectual Disability Research. 42 (1): 80–92. PMID   10030438.
  37. Kienitz R, Kay L, Beuchat I, Gelhard S, von Brauchitsch S, Mann C, et al. (September 2022). "Benzodiazepines in the Management of Seizures and Status Epilepticus: A Review of Routes of Delivery, Pharmacokinetics, Efficacy, and Tolerability". CNS Drugs. 36 (9): 951–975. doi:10.1007/s40263-022-00940-2. PMC   9477921 . PMID   35971024.{{cite journal}}: CS1 maint: overridden setting (link)
  38. 1 2 Peppers MP (1996). "Benzodiazepines for alcohol withdrawal in the elderly and in patients with liver disease". Pharmacotherapy. 16 (1): 49–57. doi:10.1002/j.1875-9114.1996.tb02915.x. PMID   8700792. S2CID   1389910.
  39. Bråthen G, Ben-Menachem E, Brodtkorb E, Galvin R, Garcia-Monco JC, Halasz P, et al. (2005). "EFNS guideline on the diagnosis and management of alcohol-related seizures: report of an EFNS task force". European Journal of Neurology. 12 (8): 575–581. doi: 10.1111/j.1468-1331.2005.01247.x . PMID   16053464. S2CID   25904252.
  40. "Lorazepam". LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012. PMID   31643878.
  41. Cox CE, Reed SD, Govert JA, Rodgers JE, Campbell-Bright S, Kress JP, et al. (2008). "An Economic Evaluation of Propofol and Lorazepam for Critically Ill Patients Undergoing Mechanical Ventilation". Critical Care Medicine. 36 (3): 706–714. doi:10.1097/CCM.0B013E3181544248. PMC   2763279 . PMID   18176312.
  42. 1 2 3 4 5 Hindmarch I (30 January 1997). "Benzodiazepines and their effects". benzo.org.uk. Retrieved 13 May 2007.
  43. Maltais F, Laberge F, Laviolette M (1996). "A randomized, double-blind, placebo-controlled study of lorazepam as premedication for bronchoscopy" (PDF). Chest. 109 (5): 1195–1198. doi:10.1378/chest.109.5.1195. PMID   8625666. Archived from the original (PDF) on 7 April 2008.
  44. Heisterkamp DV, Cohen PJ (1975). "The effect of intravenous premedication with lorazepam (Ativan), pentobarbital or diazepam on recall". British Journal of Anaesthesiology. 47 (1): 79–81. doi: 10.1093/bja/47.1.79 . PMID   238548.
  45. Tsui BC, Wagner A, Finucane B (2004). "Regional anaesthesia in the elderly: a clinical guide". Drugs Aging. 21 (14): 895–910. doi:10.2165/00002512-200421140-00001. PMID   15554749. S2CID   68771929.
  46. Verhagen EH, Hesselmann GM, Besse TC, de Graeff A (2005). "(title in Dutch)" [Palliative sedation]. Nederlands Tijdschrift voor Geneeskunde (in Dutch). 149 (9): 458–461. PMID   15771339.
  47. 1 2 3 Arcangeli A, Antonelli M, Mignani V, Sandroni C (2005). "Sedation in PACU: the role of benzodiazepines". Current Drug Targets. 6 (7): 745–748. doi:10.2174/138945005774574416. PMID   16305452.
  48. 1 2 Battaglia J (2005). "Pharmacological management of acute agitation". Drugs. 65 (9): 1207–1222. doi:10.2165/00003495-200565090-00003. PMID   15916448. S2CID   692414.
  49. Zoupanos BN, Bryois C (July 2005). "[Treatment of agitation in the emergency room]" [Treatment of agitation in the emergency room]. Revue Médicale Suisse (in French). 1 (27): 1810–1813. PMID   16119296.
  50. Huf G, Alexander J, Gandhi P, Allen MH (November 2016). "Haloperidol plus promethazine for psychosis-induced aggression". The Cochrane Database of Systematic Reviews. 2016 (11): CD005146. doi:10.1002/14651858.CD005146.pub3. PMC   6464403 . PMID   27885664.
  51. 1 2 Gillies D, Sampson S, Beck A, Rathbone J (April 2013). "Benzodiazepines for psychosis-induced aggression or agitation". The Cochrane Database of Systematic Reviews (4): CD003079. doi: 10.1002/14651858.CD003079.pub3 . hdl: 10454/16512 . PMID   23633309.
  52. 1 2 Bieniek SA, Ownby RL, Penalver A, Dominguez RA (1998). "A double-blind study of lorazepam versus the combination of haloperidol and lorazepam in managing agitation". Pharmacotherapy. 18 (1): 57–62. doi:10.1002/j.1875-9114.1998.tb03827.x. PMID   9469682. S2CID   24505811.
  53. Rosebush PI, Mazurek MF (1996). "Catatonia after benzodiazepine withdrawal". Journal of Clinical Psychopharmacology. 16 (4): 315–319. doi:10.1097/00004714-199608000-00007. PMID   8835707.
  54. van Dalfsen AN, van den Eede F, van den Bossche B, Sabbe BG (2006). "(title in Dutch)" [Benzodiazepines in the treatment of catatonia]. Tijdschrift voor Psychiatrie (in Dutch). 48 (3): 235–239. PMID   16956088.
  55. Herrstedt J, Aapro MS, Roila F, Kataja VV (2005). "ESMO Minimum Clinical Recommendations for prophylaxis of chemotherapy-induced nausea and vomiting (NV)". Annals of Oncology. 16 (Suppl 1): i77–i79. doi: 10.1093/annonc/mdi805 . PMID   15888767.
  56. Bishop KI, Curran HV (December 1998). "An investigation of the effects of benzodiazepine receptor ligands and of scopolamine on conceptual priming". Psychopharmacology. 140 (3): 345–353. doi:10.1007/s002130050775. PMID   9877014. S2CID   21940883.
  57. Bishop KI, Curran HV (September 1995). "Psychopharmacological analysis of implicit and explicit memory: a study with lorazepam and the benzodiazepine antagonist flumazenil". Psychopharmacology. 121 (2): 267–278. doi:10.1007/bf02245638. PMID   8545533. S2CID   24371644.
  58. Kripke DF (February 2016). "Mortality Risk of Hypnotics: Strengths and Limits of Evidence". Drug Safety. 39 (2): 93–107. doi: 10.1007/s40264-015-0362-0 . PMID   26563222. S2CID   7946506.
  59. "Ativan side effects". RxList. 2007. Archived from the original on 21 August 2007. Retrieved 10 August 2007.
  60. Sorel L, Mechler L, Harmant J (1981). "Comparative trial of intravenous lorazepam and clonazepam im status epilepticus". Clinical Therapeutics. 4 (4): 326–336. PMID   6120763.
  61. Bond A, Lader M (1988). "Differential effects of oxazepam and lorazepam on aggressive responding". Psychopharmacology. 95 (3): 369–373. doi:10.1007/BF00181949. PMID   3137624. S2CID   35313827.
  62. Pietras CJ, Lieving LM, Cherek DR, Lane SD, Tcheremissine OV, Nouvion S (2005). "Acute effects of lorazepam on laboratory measures of aggressive and escape responses of adult male parolees". Behavioural Pharmacology. 16 (4): 243–251. doi:10.1097/01.fbp.0000170910.53415.77. PMID   15961964. S2CID   44387644.
  63. Kalachnik JE, Hanzel TE, Sevenich R, Harder SR (2002). "Benzodiazepine behavioral side effects: review and implications for individuals with mental retardation". American Journal on Mental Retardation. 107 (5): 376–410. doi:10.1352/0895-8017(2002)107<0376:BBSERA>2.0.CO;2. ISSN   0895-8017. PMID   12186578.
  64. Michel L, Lang JP (2003). "(title in French)" [Benzodiazepines and forensic aspects]. L'Encéphale (in French). 29 (6): 479–485. PMID   15029082.
  65. Mancuso CE, Tanzi MG, Gabay M (2004). "Paradoxical reactions to benzodiazepines: literature review and treatment options". Pharmacotherapy. 24 (9): 1177–1185. doi:10.1592/phco.24.13.1177.38089. PMID   15460178. S2CID   38614605. Archived from the original on 13 December 2012.
  66. Goldney RD (1977). "Paradoxical reaction to a new minor tranquilizer". Medical Journal of Australia. 1 (5): 139–140. doi:10.5694/j.1326-5377.1977.tb130567.x. PMID   15198. S2CID   78865613.
  67. Izaute M, Bacon E (2005). "Specific effects of an amnesic drug: effect of lorazepam on study time allocation and on judgment of learning". Neuropsychopharmacology. 30 (1): 196–204. doi: 10.1038/sj.npp.1300564 . PMID   15483562. S2CID   18103662.
  68. Scharf MB, Kales A, Bixler EO, Jacoby JA, Schweitzer PK (1982). "Lorazepam-efficacy, side-effects, and rebound phenomena". Clinical Pharmacology and Therapeutics. 31 (2): 175–179. doi:10.1038/clpt.1982.27. PMID   6120058. S2CID   464310.
  69. Riker RR, Fraser GL (2005). "Adverse events associated with sedatives, analgesics, and other drugs that provide patient comfort in the intensive care unit". Pharmacotherapy. 25 (5 Pt 2): 8S–18S. doi:10.1592/phco.2005.25.5_Part_2.8S. PMID   15899744. S2CID   24789150.
  70. "FDA expands Boxed Warning to improve safe use of benzodiazepine drug". U.S. Food and Drug Administration (FDA). 23 September 2020. Retrieved 23 September 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  71. Guilleminault C (March 1990). "Benzodiazepines, breathing, and sleep". The American Journal of Medicine. 88 (3A): 25S–28S. doi:10.1016/0002-9343(90)90282-I. PMID   1968716.
  72. Kanto JH (1982). "Use of benzodiazepines during pregnancy, labour and lactation, with particular reference to pharmacokinetic considerations". Drugs. 23 (5): 354–380. doi:10.2165/00003495-198223050-00002. PMID   6124415. S2CID   27014006.
  73. McElhatton PR (1994). "The effects of benzodiazepine use during pregnancy and lactation". Reproductive Toxicology. 8 (6): 461–475. Bibcode:1994RepTx...8..461M. doi:10.1016/0890-6238(94)90029-9. PMID   7881198.
  74. 1 2 3 Authier N, Balayssac D, Sautereau M, Zangarelli A, County P, Somogyi AA, et al. (2009). "Benzodiazepine dependence: focus on withdrawal syndrome". Annales Pharmaceutiques Françaises. 67 (6): 408–413. doi:10.1016/j.pharma.2009.07.001. PMID   19900604.
  75. Butler JM, Begg EJ (2008). "Free drug metabolic clearance in elderly people". Clinical Pharmacokinetics. 47 (5): 297–321. doi:10.2165/00003088-200847050-00002. PMID   18399712. S2CID   8473906.
  76. 1 2 3 Olkkola KT, Ahonen J (2008). "Midazolam and Other Benzodiazepines". Modern Anesthetics. Handbook of Experimental Pharmacology. Vol. 182. pp. 335–360. doi:10.1007/978-3-540-74806-9_16. ISBN   978-3-540-72813-9. PMID   18175099.
  77. Longo LP, Johnson B (2000). "Addiction: Part I. Benzodiazepines – side effects, abuse risk and alternatives". American Family Physician. 61 (7): 2121–2128. PMID   10779253. Archived from the original on 12 May 2008.
  78. Ashton HC (April 2001). "Reasons for a diazepam (Valium) taper". benzo.org.uk. Retrieved 1 June 2007.
  79. MacKinnon GL, Parker WA (1982). "Benzodiazepine withdrawal syndrome: a literature review and evaluation". The American Journal of Drug and Alcohol Abuse. 9 (1): 19–33. doi:10.3109/00952998209002608. PMID   6133446.
  80. "Ativan Labeling Revision" (PDF). FDA. April 2007. Archived (PDF) from the original on 7 March 2008. Retrieved 3 October 2007.
  81. "Lorazepam: Patient Information Leaflet, UK, 1998". Genus Pharmaceuticals. 21 January 1998. Retrieved 14 May 2007.
  82. "Lorazepam". Patient UK. 25 October 2006. Archived from the original on 27 September 2007. Retrieved 14 May 2007.
  83. Baciewicz AM, Chrisman CR, Finch CK, Self TH (2008). "Update on rifampin and rifabutin drug interactions". American Journal of the Medical Sciences. 335 (2): 126–136. doi:10.1097/MAJ.0b013e31814a586a. PMID   18277121. S2CID   42918932.
  84. Löscher W, Rogawski MA (December 2012). "How theories evolved concerning the mechanism of action of barbiturates". Epilepsia. 53 (Suppl 8): 12–25. doi: 10.1111/epi.12025 . PMID   23205959. S2CID   4675696.
  85. Contribution to the sensible use of benzodiazepines. Strassbourg: Council of Europe, Pompidou Group. 2002. ISBN   978-92-871-4751-6.
  86. Baselt R (2008). Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Foster City, CA: Biomedical Publications. pp. 860–862.
  87. Shaw LM (2001). The Clinical Toxicology Laboratory: Contemporary Practice of Poisoning Evaluation. Amer. Assoc. for Clinical Chemistry. p. 216. ISBN   9781890883539.
  88. Ries RK, Miller SC, Fiellin DA (2009). Principles of Addiction Medicine. Lippincott Williams & Wilkins. p. 301. ISBN   978-0-7817-7477-2.
  89. Kang M, Galuska MA, Ghassemzadeh S (2023). "Benzodiazepine Toxicity". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID   29489152 . Retrieved 13 June 2023.
  90. Mandrioli R, Mercolini L, Raggi MA (2008). "Benzodiazepine metabolism: an analytical perspective". Current Drug Metabolism. 9 (8): 827–844. doi:10.2174/138920008786049258. PMID   18855614.
  91. Pompéia S, Manzano GM, Tufik S, Bueno OF (2005). "What makes lorazepam different from other benzodiazepines?". Journal of Physiology. 569 (Pt 2): 709, author reply 710. doi:10.1113/jphysiol.2005.569005. PMC   1464231 . PMID   16322061.
  92. Chouinard G (2004). "Issues in the clinical use of benzodiazepines: potency, withdrawal, and rebound". Journal of Clinical Psychiatry. 65 (Suppl 5): 7–12. PMID   15078112.
  93. British Medical Association and Royal Pharmaceutical Society of Great Britain (March 2007). British National Formulary (v53 ed.). London: BMJ and RPS Pub. ISBN   978-0-85369-731-2.
  94. Nimmo R, Ashton CH (March 2007). "Benzodiazepine Equivalence Table". benzo.org.uk. Retrieved 13 May 2007.
  95. Ashton CH (April 2007). "Benzodiazepine equivalency table". Archived from the original on 28 September 2007. Retrieved 23 September 2007.
  96. 1 2 3 4 5 "Lorzem Data Sheet". New Zealand Medicines and Medical Devices Safety Authority. 4 June 1999. Archived from the original on 28 September 2007. Retrieved 13 May 2007.
  97. Funderburk FR, Griffiths RR, McLeod DR, Bigelow GE, Mackenzie A, Liebson IA, et al. (1988). "Relative abuse liability of lorazepam and diazepam: an evaluation in 'recreational' drug users". Drug and Alcohol Dependence. 22 (3): 215–222. doi: 10.1016/0376-8716(88)90021-X . PMID   3234245.
  98. Lackner TE (2002). "Strategies for optimizing antiepileptic drug therapy in elderly people". Pharmacotherapy. 22 (3): 329–364. doi:10.1592/phco.22.5.329.33192. PMID   11898891. S2CID   45073171. Archived from the original on 15 October 2003.
  99. Choudhery V, Townend W (2006). "Lorazepam or diazepam in paediatric status epilepticus". Emergency Medicine Journal. 23 (6): 472–473. doi:10.1136/emj.2006.037606. PMC   2564351 . PMID   16714516.
  100. Henry JC, Holloway R (2006). "Review: lorazepam provides the best control for status epilepticus" (PDF). Evidence Based Medicine. 11 (2): 54. doi: 10.1136/ebm.11.2.54 . PMID   17213084. S2CID   30618719. Archived (PDF) from the original on 12 December 2006.
  101. Cock HR, Schapira AH (2002). "A comparison of lorazepam and diazepam as initial therapy in convulsive status epilepticus". QJM. 95 (4): 225–231. doi:10.1093/qjmed/95.4.225. PMID   11937649.
  102. 1 2 3 Greenblatt DJ, Schillings RT, Kyriakopoulos AA, Shader RI, Sisenwine SF, Knowles JA, et al. (1976). "Clinical pharmacokinetics of lorazepam. I. Absorption and disposition of oral 14C-lorazepam". Clinical Pharmacology and Therapeutics. 20 (3): 329–341. doi:10.1002/cpt1976203329. PMID   8232. S2CID   76854489.
  103. Papini O, Bertucci C, da Cunha SP, dos Santos NA, Lanchote VL (2006). "Quantitative assay of lorazepam and its metabolite glucuronide by reverse-phase liquid chromatography-tandem mass spectrometry in human plasma and urine samples". Journal of Pharmaceutical and Biomedical Analysis. 40 (2): 389–396. doi:10.1016/j.jpba.2005.07.033. PMID   16243469.
  104. Herman RJ, Van Pham JD, Szakacs CB (1989). "Disposition of lorazepam in human beings: enterohepatic recirculation and first-pass effect". Clinical Pharmacology and Therapeutics. 46 (1): 18–25. doi:10.1038/clpt.1989.101. PMID   2743706. S2CID   2092144.
  105. Matthew E, Andreason P, Pettigrew K, et al. (1995). "Benzodiazepine receptors mediate regional blood flow changes in the living human brain". Proc. Natl. Acad. Sci. U.S.A. 92 (7): 2775–2779. Bibcode:1995PNAS...92.2775M. doi: 10.1073/pnas.92.7.2775 . PMC   42301 . PMID   7708722.
  106. Sybirska E, Seibyl JP, Bremner JD, et al. (1993). "[123I]Iomazenil SPECT imaging demonstrates significant benzodiazepine receptor reserve in human and nonhuman primate brain". Neuropharmacology. 32 (7): 671–680. doi: 10.1016/0028-3908(93)90080-M . PMID   8395663. S2CID   43017514.
  107. McLean MJ, Macdonald RL (1988). "Benzodiazepines, but not beta-carbolines, limit high frequency repetitive firing of action potentials of spinal cord neurons in cell culture". Journal of Pharmacology and Experimental Therapeutics. 244 (2): 789–795. PMID   2450203.
  108. baxter.com – Lorazepam Injection Data Sheet Archived 7 May 2007 at the Wayback Machine
  109. Yaucher NE, Fish JT, Smith HW, Wells JA (2003). "Propylene glycol-associated renal toxicity from lorazepam infusion". Pharmacotherapy. 23 (9): 1094–1099. doi:10.1592/phco.23.10.1094.32762. PMID   14524641. S2CID   20496680.
  110. American Academy of Hospice and Palliative Medicine, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation , American Academy of Hospice and Palliative Medicine, archived from the original on 1 September 2013, retrieved 1 August 2013, which cites
  111. Braestrup C, Squires RF (1978). "Pharmacological characterization of benzodiazepine receptors in the brain". European Journal of Pharmacology. 48 (3): 263–270. doi:10.1016/0014-2999(78)90085-7. PMID   639854.
  112. "Benzodiazepine Names". non-benzodiazepines.org.uk. Archived from the original on 8 December 2008. Retrieved 29 December 2008.
  113. Griffiths RR, Johnson MW (2005). "Relative abuse liability of hypnotic drugs: a conceptual framework and algorithm for differentiating among compounds". Journal of Clinical Psychiatry. 66 (Suppl 9): 31–41. PMID   16336040.
  114. "Drug Abuse Warning Network, 2006: National Estimates of Drug-Related Emergency Department Visits". Substance Abuse and Mental Health Services Administration. 2006. Archived from the original on 16 March 2014. Retrieved 21 February 2014.
  115. "List of psychotropic substances under international control: Green List 23rd ed" (PDF). Vienna: International Narcotics Control Board. August 2003. p. 7. Archived from the original (PDF) on 5 December 2005.
  116. "List of Controlled Drugs" (PDF). UK Home Office. January 2006. Archived from the original (PDF) on 11 July 2009.
  117. Labaton S (13 July 2000). "Generic-Drug Maker Agrees to Settlement In Price-Fixing Case". The New York Times . Archived from the original on 14 October 2007. Retrieved 14 May 2007.