BmTx3

Last updated

BmTx3 is a neurotoxin, which is a component of the venom of the scorpion Buthus Martensi Karsch. It blocks A-type potassium channels in the central nervous system and hERG-channels in the heart.

Contents

Source/Isolation

BmTx3 was originally purified from the venom of the Chinese scorpion, Buthus Martensi Karsch. BmTx3 is a “short-chain” peptide like other potassium channel blockers in the scorpion venom and added to the phylogenetic tree in the subfamily α-KTx15. Its 3D structure has not yet been elucidated, but based on sequence similarity it likely resembles the 3D structure of BmTx1 [1] or Discrepin. [2]

Biochemistry

BmTx3 consists of an α-helix and two β-sheet segments cross-linked by three disulfide bridges (Cs-α/β motif). [1] It is a short chain peptide with a molecular mass of 3751.6 Da; it consists of 37 amino acids. [1]

a/b motif of BmTx3 PDB 1m2s EBI.jpg
α/β motif of BmTx3

Target

BmTx3 is the first toxin from the scorpion α-KTx subfamily 15 [3] with two functional faces. As all α-KTx peptides, BmTx3 blocks A-type (IA) potassium currents (KD = 54 nM). BmTx3 blocks primarily the Kv4.x proteins and has a higher affinity for Kv4.1 channels than for Kv4.2 and Kv4.3 channels. [4] The second functional face of BmTx3 blocks the hERG (human Ether-à-go-go) channel (KD = 2 μM), a characteristic belonging to γ-KTx peptides. [4] BmTx3 binding site seems essentially localized in neurons but could also be present in glial cells, endothelial cells and/or arterial smooth muscle cells. The distribution of BmTx3 binding sites is heterogeneous; a high density is found in the caudateputamen and accumbens nucleus, thalamus, hippocampal formation and cerebellum. [4]

Mode of Action

The functional face of “short-chain” scorpion toxins is built of two important dyads (Lys and Tyr) on the β-sheet side. Lysine plugs deep into the channel pore and Tyrosine, as penultimate or ultimate and hydrophobic residue, turns it to fixate it, leading to a physical occlusion of the channel pore. [1] This is supported by the finding that deletion of the two C-terminal residues (sBmTx3-delYP) results in loss of ability to block IA-current. [1]

The other functional face is thought to be situated at the α-helix-side and composed of Arg18 and Lys19, like the functional face of other hERG toxins. It is known that α-KTx peptides use the β-sheet side to interact with the receptor, whereas γ-KTx peptides usually use their α-helix-side. [5] As BmTx3 seems to use both sides to bind to different potassium channels, it might be an evolutionary transient between the two families. [5]

Toxicity

When injected into mice it causes epileptiform behavior. [6] This might be due to its effect on A-type K+ channels, which, like the Kv4.x, are involved in action potential back propagation, firing frequency, spike initiation and action potential waveform determination. [4] Blocking of the hERG channel can cause drug-induced long QT syndrome, arrhythmias and ventricular fibrillation which can result in death. [5]

Related Research Articles

<span class="mw-page-title-main">Slotoxin</span> Chemical compound

Slotoxin is a peptide from Centruroides noxius Hoffmann scorpion venom. It belongs to the short scorpion toxin superfamily.

Discrepin (α-KTx15.6) is a peptide from the venom of the Venezuelan scorpion Tityus discrepans. It acts as a neurotoxin by irreversibly blocking A-type voltage-dependent K+-channels.

In molecular biology, the BmKK2 toxins are a family of scorpion toxins. They belong to the scorpion toxin subfamily alpha-KTx 14. They include a novel short-chain peptide from the Asian scorpion Mesobuthus martensii Karsch, a potassium channel blocker composed of 31 amino acid residues. The peptide adopts a classical alpha/beta-scaffold for alpha-KTxs. BmKK2 selectively inhibits the delayed rectifier K+ current, but does not affect the fast transient K+ current.

BeKm-1 is a toxin from the Central Asian scorpion Buthus eupeus. BeKm-1 acts by selectively inhibiting the human Ether-à-go-go Related Gene (hERG) channels, which are voltage gated potassium ion channels.

<span class="mw-page-title-main">Pandinotoxin</span> Chemical compound

Pandinotoxins are toxins from the venom of the emperor scorpion Pandinus imperator. They are selective blockers of voltage-gated potassium channels

Butantoxin (BuTX) is a compound of the venom of three Brazilian and an Argentinean scorpion species of the genus Tityus. Butantoxin reversibly blocks the voltage-gated K+ channels Shaker B and Kv1.2, and the Ca2+-activated K+ channelsKCa 1.1 and KCa 3.1.

<span class="mw-page-title-main">Pandinus imperator (Pi3) toxin</span>

Pi3 toxin is a purified peptide derivative of the Pandinus imperator scorpion venom. It is a potent blocker of voltage-gated potassium channel, Kv1.3 and is closely related to another peptide found in the venom, Pi2.

Tamulotoxin is a venomous neurotoxin from the Indian Red Scorpion.

AmmTX3, produced by Androctonus mauretanicus, is a scorpion toxin of the α-KTX15 subfamily. The toxin is known for its ability to act as a specific Kv4 channel blocker, and thereby reducing the A-type potassium current through this channel.

HsTx1 is a toxin from the venom of the scorpion Heterometrus spinifer. HsTx1 is a very potent inhibitor of the rat Kv1.3 voltage-gated potassium channel.

Spinoxin is a 34-residue peptide neurotoxin isolated from the venom of the Malaysian black scorpion Heterometrus spinifer. It is part of the α-KTx6 subfamily and exerts its effects by inhibiting voltage-gated potassium channels, specifically Kv1.2 and Kv1.3.

HgeTx1 (systematic name: α-KTx 6.14) is a toxin produced by the Mexican scorpion Hoffmanihadrurus gertschi that is a reversible blocker of the Shaker B K+-channel, a type of voltage-gated potassium channels.

Limbatustoxin, is an ion channel toxin from the venom of the Centruroides limbatus scorpion. This toxin is a selective blocker of BK channels, calcium-activated potassium channels.

AaTX1 is a scorpion toxin of the α-KTx15 subfamily originally found in the venom of Androctonus australis. The toxin acts as a specific blocker on Kv4.3 voltage-gated potassium channel, thereby abolishing the A-type potassium currents.

<span class="mw-page-title-main">ImKTx88</span>

ImKTx88 is a selective inhibitor of the Kv1 ion channel family that can be isolated from the venom of the Isometrus maculatus. This peptide belongs to the α-KTx subfamily and is classified as a pore-blocking toxin.

BmP02, also known as α-KTx 9.1 or Bmkk(6), is a toxin from the Buthus Martensi Karsch (BmK) scorpion. The toxin acts on potassium channels, blocking Kv1.3 and slowing the deactivation of Kv4.2. BmP02 is not toxic to humans or mice.

<span class="mw-page-title-main">OdK2</span>

OdK2 is a toxin found in the venom of the Iranian scorpion Odonthobuthus doriae. It belongs to the α-KTx family, and selectively blocks the voltage-gated potassium channel Kv1.3 (KCNA3).

BmK NSPK is a toxin isolated from the venom of the Chinese armor-tail scorpion, which specifically targets voltage gated potassium channels (Kv), resulting in a direct inhibition of outward potassium current.

<span class="mw-page-title-main">OSK3</span>

OSK3, from the venom of the scorpion Orthochirus scrobiculosus, is a potassium channel blocker that belongs to the α-KTx8 subfamily and targets the voltage-gated potassium channels KCNA2 (Kv1.2), and KCNA3 (Kv1.3).

BmKTX is a scorpion neurotoxin which blocks the voltage gated potassium channel Kv1.3.

References

  1. 1 2 3 4 5 Vacher, H. (2003). "Functional consequences of deleting the two C-terminal residues of the scorpion toxin BmTX3". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1646 (1–2): 152–156. doi:10.1016/S1570-9639(02)00557-5. PMID   12637022.
  2. Prestipino, G. (2009). "Scorpion toxins that block transient currents (I(A)) of rat cerebellum granular cells". Toxicology Letters . 187 (1): 1–9. doi:10.1016/j.toxlet.2009.01.027. PMID   19429236.
  3. Vacher, H. (2004). "Definition of the alpha-KTx15 subfamily". Toxicon. 43 (8): 887–94. doi:10.1016/j.toxicon.2004.03.023. PMID   15208021.
  4. 1 2 3 4 Vacher, H. (2006). "Kv4 channels sensitive to BmTX3 in rat nervous system: autoradiographic analysis of their distribution during brain ontogenesis". Eur J Neurosci. 24 (5): 1325–40. doi:10.1111/j.1460-9568.2006.05020.x. PMID   16987219. S2CID   3129580.
  5. 1 2 3 Huys, I. (2004). "BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K+ and HERG currents". Biochem. J. 378 (Pt 3): 745–52. doi:10.1042/BJ20031324. PMC   1223995 . PMID   14599291.
  6. Vacher, H. (2001). "A new class of scorpion toxin binding sites related to an A-type K+ channel: pharmacological characterization and localization in rat brain". FEBS Lett. 501 (1): 31–5. doi: 10.1016/S0014-5793(01)02620-5 . PMID   11457451.