Phenanthridine

Last updated
Phenanthridine
Phenanthridin - Phenanthridine.svg
Names
Preferred IUPAC name
Phenanthridine [1]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.005.396 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-934-4
PubChem CID
UNII
  • InChI=1S/C13H9N/c1-2-6-11-10(5-1)9-14-13-8-4-3-7-12(11)13/h1-9H X mark.svgN
    Key: RDOWQLZANAYVLL-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C13H9N/c1-2-6-11-10(5-1)9-14-13-8-4-3-7-12(11)13/h1-9H
    Key: RDOWQLZANAYVLL-UHFFFAOYAL
  • C1=CC=C2C(=C1)C=NC3=CC=CC=C23
Properties
C13H9N
Molar mass 179.217 g/mol
Melting point 107.4 °C (225.3 °F; 380.5 K)
Boiling point 348.9 °C (660.0 °F; 622.0 K)
slightly soluble [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Phenanthridine is a nitrogen heterocyclic compound that is the basis of DNA-binding fluorescent dyes through intercalation. Examples of such dyes are ethidium bromide and propidium iodide. It is an isomer of acridine.

Phenanthridine was discovered by Amé Pictet and H. J. Ankersmit in 1891 by pyrolysis of the condensation product of benzaldehyde and aniline. [3] In the Pictet–Hubert reaction (1899) the compound is formed in a reaction of the 2-aminobiphenyl – formaldehyde adduct (an N-acyl-o-xenylamine) with zinc chloride at elevated temperatures. [4]

The reaction conditions for the Pictet–Hubert reaction were improved by Morgan and Walls in 1931, replacing the metal by phosphorus oxychloride and using nitrobenzene as a reaction solvent. [5] For this reason, the reaction is also called the Morgan–Walls reaction. [6]

Pictet-Hubert reaction V1.svg

The reaction is similar to the Bischler–Napieralski reaction and the Pictet–Spengler reaction.

Related Research Articles

Pyrimidine is an aromatic, heterocyclic, organic compound similar to pyridine. One of the three diazines, it has nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine and pyridazine.

<span class="mw-page-title-main">Piperidine</span> Chemical compound

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). It is a colorless liquid with an odor described as objectionable, typical of amines. The name comes from the genus name Piper, which is the Latin word for pepper. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins.

<span class="mw-page-title-main">Acridine</span> Chemical compound

Acridine is an organic compound and a nitrogen heterocycle with the formula C13H9N. Acridines are substituted derivatives of the parent ring. It is a planar molecule that is structurally related to anthracene with one of the central CH groups replaced by nitrogen. Like the related molecules pyridine and quinoline, acridine is mildly basic. It is an almost colorless solid, which crystallizes in needles. There are few commercial applications of acridines; at one time acridine dyes were popular, but they are now relegated to niche applications, such as with acridine orange. The name is a reference to the acrid odour and acrid skin-irritating effect of the compound.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Quinoline</span> Chemical compound

Quinoline is a heterocyclic aromatic organic compound with the chemical formula C9H7N. It is a colorless hygroscopic liquid with a strong odor. Aged samples, especially if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline itself has few applications, but many of its derivatives are useful in diverse applications. A prominent example is quinine, an alkaloid found in plants. Over 200 biologically active quinoline and quinazoline alkaloids are identified. 4-Hydroxy-2-alkylquinolines (HAQs) are involved in antibiotic resistance.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Isoquinoline</span> Chemical compound

Isoquinoline is an individual chemical specimen - a heterocyclic aromatic organic compound - as well as the name of a family of many thousands of natural plant alkaloids, any one of which might be referred to as "an isoquinoline". It is a structural isomer of quinoline. Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring. In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in many naturally occurring alkaloids such as papaverine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine.

Pyrazine is a heterocyclic aromatic organic compound with the chemical formula C4H4N2. It is a symmetrical molecule with point group D2h. Pyrazine is less basic than pyridine, pyridazine and pyrimidine. It is a "deliquescent crystal or wax-like solid with a pungent, sweet, corn-like, nutty odour".

Thiazole, or 1,3-thiazole, is a 5-membered heterocyclic compound that contains both sulfur and nitrogen. The term 'thiazole' also refers to a large family of derivatives. Thiazole itself is a pale yellow liquid with a pyridine-like odor and the molecular formula C3H3NS. The thiazole ring is notable as a component of the vitamin thiamine (B1).

<span class="mw-page-title-main">Benzoin condensation</span> Reaction between two aromatic aldehydes

The benzoin addition is an addition reaction involving two aldehydes. The reaction generally occurs between aromatic aldehydes or glyoxals, and results in formation of an acyloin. In the classic example, benzaldehyde is converted to benzoin.

The Bischler–Möhlau indole synthesis, also often referred to as the Bischler indole synthesis, is a chemical reaction that forms a 2-aryl-indole from an α-bromo-acetophenone and excess aniline; it is named after August Bischler and Richard Möhlau .

The Bischler–Napieralski reaction is an intramolecular electrophilic aromatic substitution reaction that allows for the cyclization of β-arylethylamides or β-arylethylcarbamates. It was first discovered in 1893 by August Bischler and Bernard Napieralski, in affiliation with Basel Chemical Works and the University of Zurich. The reaction is most notably used in the synthesis of dihydroisoquinolines, which can be subsequently oxidized to isoquinolines.

The Friedländer synthesis is a chemical reaction of 2-aminobenzaldehydes with ketones to form quinoline derivatives. It is named after German chemist Paul Friedländer (1857–1923).

<span class="mw-page-title-main">Carbazole</span> Chemical compound

Carbazole is an aromatic heterocyclic organic compound. It has a tricyclic structure, consisting of two six-membered benzene rings fused on either side of a five-membered nitrogen-containing ring. The compound's structure is based on the indole structure, but in which a second benzene ring is fused onto the five-membered ring at the 2–3 position of indole.

The Cook–Heilbron thiazole synthesis highlights the formation of 5-aminothiazoles through the chemical reaction of α-aminonitriles or aminocyanoacetates with dithioacids, carbon disulphide, carbon oxysulfide, or isothiocyanates at room temperature and under mild or aqueous conditions. Variation of substituents at the 2nd and 4th position of the thiazole is introduced by selecting different combinations of starting reagents.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an organic compound with the formula C6H4CCNH3. Indole is classified as an aromatic heterocycle. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indoles are derivatives of indole where one or more of the hydrogen atoms have been replaced by substituent groups. Indoles are widely distributed in nature, most notably as amino acid tryptophan and neurotransmitter serotonin.

<span class="mw-page-title-main">Thianthrene</span> Chemical compound

Thianthrene is a sulfur-containing heterocyclic chemical compound. It is a derivative of the parent heterocycle called dithiin. It is notable for its ease of oxidation.

<span class="mw-page-title-main">3,3,4,4-Tetramethyltetrahydrofuran-2,5-dione</span> Chemical compound

In chemistry, 3,3,4,4-tetramethyltetrahydrofuran-2,5-dione is a heterocyclic compound with the formula C
8
H
12
O
3
, or (CH3)2(COC2COO)(CH3)2. It is a white crystalline solid with a pungent camphoraceous odor.

<span class="mw-page-title-main">1,2,3-Benzothiadiazole</span> Organic heterocyclic aromatic chemical

1,2,3-Benzothiadiazole is a bicyclic aromatic chemical composed of a benzene ring that is fused to a 1,2,3-thiadiazole. A colorless solid, the compound is soluble in organic solvents.

In chemistry imidines are a rare functional group, being the nitrogen analogues of anhydrides and imides. They were first reported by Adolf Pinner in 1883, but did not see significant investigation until the 1950s, when Patrick Linstead and John Arthur Elvidge developed a number of compounds.

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 212. doi:10.1039/9781849733069. ISBN   978-0-85404-182-4.
  2. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 3–460, ISBN   0-8493-0594-2
  3. Pictet, Amé; Ankersmit, H. J. (1891). "Ueber das Phenanthridin". Justus Liebigs Annalen der Chemie. 266 (1–2): 138–153. doi:10.1002/jlac.18912660107.
  4. Pictet, Amé; Hubert, A. (1896). "Ueber eine neue Synthese der Phenanthridinbasen". Berichte der Deutschen Chemischen Gesellschaft. 29 (2): 1182–1189. doi:10.1002/cber.18960290206.
  5. Morgan, Gilbert T.; Walls, Leslie Percy (1931). "CCCXXXV.—Researches in the phenanthridine series. Part I. A new synthesis of phenanthridine homologues and derivatives". J. Chem. Soc.: 2447–2456. doi:10.1039/JR9310002447.
  6. Jie Jack Li, ed. (2004). Name Reactions in Heterocyclic Chemistry. Wiley.