Anipamil

Last updated
Anipamil
Anipamil.svg
Names
IUPAC name
2-(3-methoxyphenyl)-2-[3-[2-(3-methoxyphenyl)ethyl-methylamino]propyl]tetradecanenitrile
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.072.899 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 280-213-5
MeSH Anipamil
PubChem CID
UNII
  • InChI=1S/C34H52N2O2/c1-5-6-7-8-9-10-11-12-13-14-23-34(29-35,31-19-16-21-33(28-31)38-4)24-17-25-36(2)26-22-30-18-15-20-32(27-30)37-3/h15-16,18-21,27-28H,5-14,17,22-26H2,1-4H3 Yes check.svgY
    Key: PHFDAOXXIZOUIX-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C34H52N2O2/c1-5-6-7-8-9-10-11-12-13-14-23-34(29-35,31-19-16-21-33(28-31)38-4)24-17-25-36(2)26-22-30-18-15-20-32(27-30)37-3/h15-16,18-21,27-28H,5-14,17,22-26H2,1-4H3
    Key: PHFDAOXXIZOUIX-UHFFFAOYAP
  • CCCCCCCCCCCCC(CCCN(C)CCC1=CC(OC)=CC=C1)(C#N)C1=CC(OC)=CC=C1
  • N#CC(c1cc(OC)ccc1)(CCCCCCCCCCCC)CCCN(CCc2cccc(OC)c2)C
Properties
C34H52N2O2
Molar mass 520.802 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Anipamil is a calcium channel blocker, [1] specifically of the phenylalkylamine type. This type is separate from its more common cousin Dihydropyridine. Anipamil is an analog of the more common drug verapamil, which is the most common type of phenylalkylamine style calcium channel blocker. Anipamil has been shown to be a more effective antiarrhythmic medication [2] than verapamil because it does not cause hypertension as seen in verapamil. [3] It is able to do this by bonding to the myocardium tighter than verapamil. [2]

Study of Effects in Rabbits

Anipamil is used to prevent the thickening of aortic muscles in rabbits with hypertension . A study was done by the American Journal of Hypertension to understand the effects anipamil may have on the smooth muscle cell in hypertensive rabbits. [4] After using monoclonal antimyosin antibodies to recognize smooth muscle, nonmuscle myosin heavy chains and identify various aortic smooth muscle types, twenty four rabbits with hypertension were studied over a period of 2.5-4 months. [4] The rabbits were split into two groups of 12, and six rabbits from each group received a 40 mg oral dose of anipamil daily while the remaining received an oral placebo daily. [4] Cryosections of primary and secondary smooth aortic muscle were then taken for morphometry and immunocytochemical studies to understand the potential change in phenotype after the addition of anipamil. [4] The study revealed that smooth aortic muscle treated with anipamil demonstrates less thickening of the muscle and an increase in differentiated cell phenotype . The results of this study showed anipamil has a direct effect on smooth muscle cell phenotypes .

Another study occurred at the Institute of Pharmacological Sciences at the University of Milan to understand the antiatherosclerotic effects of anipamil in Cholesterol-Fed Rabbits. [5] In this study, there were three groups of 18 rabbits: control group, cholesterol-fed group, and a cholesterol-fed group receiving the drug. [5] The control group received a standard pelleted show of 120 grams daily. The cholesterol-fed group received 1.6 grams of cholesterol per day. [5] The cholesterol-red group receiving the drug received 1.6 grams of cholesterol per day along with an anipamil dose of 10 milligrams per day. [5] During the two week, four week, and eight week mark, the amount of plasma cholesterol, triglycerides, and high density lipoprotein cholesterol were measured. [5] The results showed that HDL cholesterol increased at 2-fold and plasma cholesterol increased at a 25-fold. [5] Anipamil had no effect on the plasma cholesterol levels or HDL cholesterol and a decrease in the amount of aortic surface covered by plaque in the cholesterol-fed groups. [5] The study showed that the consumption of anipamil at 10 milligrams per kilogram reduced the amount of plaque covering aortic surface and the amount of cholesterol in the aorta in cholesterol-fed rabbits. [5] This study also showed that the antiatherosclerotic effects of anipamil has no effect on plasma cholesterol levels. [5]

Related Research Articles

<span class="mw-page-title-main">Atherosclerosis</span> Form of arteriosclerosis

Atherosclerosis is a pattern of the disease arteriosclerosis, characterized by development of abnormalities called lesions in walls of arteries. These lesions may lead to narrowing of the arterial walls due to buildup of atheromatous plaques. At onset there are usually no symptoms, but if they develop, symptoms generally begin around middle age. In severe cases, it can result in coronary artery disease, stroke, peripheral artery disease, or kidney disorders, depending on which body parts(s) the affected arteries are located in the body.

Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are a group of medications that disrupt the movement of calcium through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as medications to decrease blood pressure in patients with hypertension. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients. Calcium channel blockers are also frequently used to alter heart rate, to prevent peripheral and cerebral vasospasm, and to reduce chest pain caused by angina pectoris.

<span class="mw-page-title-main">Calcium in biology</span> Use of calcium by organisms

Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contraction of all muscle cell types, and in fertilization. Many enzymes require calcium ions as a cofactor, including several of the coagulation factors. Extracellular calcium is also important for maintaining the potential difference across excitable cell membranes, as well as proper bone formation.

<span class="mw-page-title-main">Verapamil</span> Calcium channel blocker medication

Verapamil, sold under various trade names, is a calcium channel blocker medication used for the treatment of high blood pressure, angina, and supraventricular tachycardia. It may also be used for the prevention of migraines and cluster headaches. It is given by mouth or by injection into a vein.

<span class="mw-page-title-main">Pulse pressure</span> Difference between systolic and diastolic blood pressure

Pulse pressure is the difference between systolic and diastolic blood pressure. It is measured in millimeters of mercury (mmHg). It represents the force that the heart generates each time it contracts. Healthy pulse pressure is around 40 mmHg. A pulse pressure that is consistently 60 mmHg or greater is likely to be associated with disease, and a pulse pressure of 50 mmHg or more increases the risk of cardiovascular disease. Pulse pressure is considered low if it is less than 25% of the systolic. A very low pulse pressure can be a symptom of disorders such as congestive heart failure.

Antihypertensives are a class of drugs that are used to treat hypertension. Antihypertensive therapy seeks to prevent the complications of high blood pressure, such as stroke, heart failure, kidney failure and myocardial infarction. Evidence suggests that reduction of the blood pressure by 5 mmHg can decrease the risk of stroke by 34% and of ischaemic heart disease by 21%, and can reduce the likelihood of dementia, heart failure, and mortality from cardiovascular disease. There are many classes of antihypertensives, which lower blood pressure by different means. Among the most important and most widely used medications are thiazide diuretics, calcium channel blockers, ACE inhibitors, angiotensin II receptor antagonists (ARBs), and beta blockers.

<span class="mw-page-title-main">Amlodipine</span> Medication against high blood pressure

Amlodipine, sold under the brand name Norvasc among others, is a calcium channel blocker medication used to treat high blood pressure, coronary artery disease (CAD) and variant angina. It is taken orally.

<span class="mw-page-title-main">Nifedipine</span> Calcium channel blocker medication

Nifedipine, sold under the brand names Adalat and Procardia among others, is a calcium channel blocker medication used to manage angina, high blood pressure, Raynaud's phenomenon, and premature labor. It is one of the treatments of choice for Prinzmetal angina. It may be used to treat severe high blood pressure in pregnancy. Its use in preterm labor may allow more time for steroids to improve the baby's lung function and provide time for transfer of the mother to a well qualified medical facility before delivery. It is a calcium channel blocker of the dihydropyridine type. Nifedipine is taken by mouth and comes in fast- and slow-release formulations.

<span class="mw-page-title-main">Hydralazine</span> Anti-hypertension medication

Hydralazine, sold under the brand name Apresoline among others, is a medication used to treat high blood pressure and heart failure. This includes high blood pressure in pregnancy and very high blood pressure resulting in symptoms. It has been found to be particularly useful in heart failure, together with isosorbide dinitrate, for treatment of people of African descent. It is given by mouth or by injection into a vein. Effects usually begin around 15 minutes and last up to six hours.

<span class="mw-page-title-main">Lercanidipine</span> Antihypertensive drug of the calcium channel blocker class

Lercanidipine is an antihypertensive drug. It belongs to the dihydropyridine class of calcium channel blockers, which work by relaxing and opening the blood vessels allowing the blood to circulate more freely around the body. This lowers the blood pressure and allows the heart to work more efficiently.

<span class="mw-page-title-main">Nitrendipine</span> Antihypertensive drug of the calcium channel blocker class

Nitrendipine is a dihydropyridine calcium channel blocker. It is used in the treatment of primary (essential) hypertension to decrease blood pressure and can reduce the cardiotoxicity of cocaine.

<span class="mw-page-title-main">Calciseptine</span> Neurotoxin

Calciseptine (CaS) is a natural neurotoxin isolated from the black mamba Dendroaspis p. polylepis venom. This toxin consists of 60 amino acids with four disulfide bonds. Calciseptine specifically blocks L-type calcium channels, but not other voltage-dependent Ca2+ channels such as N-type and T-type channels.

<span class="mw-page-title-main">L-type calcium channel</span> Family of transport proteins

The L-type calcium channel is part of the high-voltage activated family of voltage-dependent calcium channel. "L" stands for long-lasting referring to the length of activation. This channel has four isoforms: Cav1.1, Cav1.2, Cav1.3, and Cav1.4.

The following outline is provided as an overview of and topical guide to cardiology, the branch of medicine dealing with disorders of the human heart. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease and electrophysiology. Physicians who specialize in cardiology are called cardiologists.

<span class="mw-page-title-main">Barnidipine</span> Antihypertensive drug of the calcium channel blocker class

Barnidipine is a calcium channel blocker which belongs to the dihydropyridine (DHP) group of calcium channel blockers. It is used in the treatment of hypertension.

<span class="mw-page-title-main">Efonidipine</span> Antihypertensive drug of the calcium channel blocker class

Efonidipine (INN) is a dihydropyridine calcium channel blocker marketed by Shionogi & Co. of Japan. It was launched in 1995, under the brand name Landel (ランデル). The drug blocks both T-type and L-type calcium channels. Drug Controller General of India (DCGI) has approved the use of efonidipine in India. It is launched under the brand name "Efnocar".

<span class="mw-page-title-main">Familial aortic dissection</span> Medical condition

Familial aortic dissection or FAD refers to the splitting of the wall of the aorta in either the arch, ascending or descending portions. FAD is thought to be passed down as an autosomal dominant disease and once inherited will result in dissection of the aorta, and dissecting aneurysm of the aorta, or rarely aortic or arterial dilation at a young age. Dissection refers to the actual tearing open of the aorta. However, the exact gene(s) involved has not yet been identified. It can occur in the absence of clinical features of Marfan syndrome and of systemic hypertension. Over time this weakness, along with systolic pressure, results in a tear in the aortic intima layer thus allowing blood to enter between the layers of tissue and cause further tearing. Eventually complete rupture of the aorta occurs and the pleural cavity fills with blood. Warning signs include chest pain, ischemia, and hemorrhaging in the chest cavity. This condition, unless found and treated early, usually results in death. Immediate surgery is the best treatment in most cases. FAD is not to be confused with PAU and IMH, both of which present in ways similar to that of familial aortic dissection.

<span class="mw-page-title-main">Pathophysiology of hypertension</span>

Pathophysiology is a study which explains the function of the body as it relates to diseases and conditions. The pathophysiology of hypertension is an area which attempts to explain mechanistically the causes of hypertension, which is a chronic disease characterized by elevation of blood pressure. Hypertension can be classified by cause as either essential or secondary. About 90–95% of hypertension is essential hypertension. Some authorities define essential hypertension as that which has no known explanation, while others define its cause as being due to overconsumption of sodium and underconsumption of potassium. Secondary hypertension indicates that the hypertension is a result of a specific underlying condition with a well-known mechanism, such as chronic kidney disease, narrowing of the aorta or kidney arteries, or endocrine disorders such as excess aldosterone, cortisol, or catecholamines. Persistent hypertension is a major risk factor for hypertensive heart disease, coronary artery disease, stroke, aortic aneurysm, peripheral artery disease, and chronic kidney disease.

<span class="mw-page-title-main">Levamlodipine</span> Chemical compound

Levamlodipine (INN), also known as levoamlodipine or S-amlodipine is a pharmacologically active enantiomer of amlodipine. Amlodipine belongs to the dihydropyridine group of calcium channel blocker used as an antihypertensive and antianginal agent. It was approved by the U.S. FDA in December 2019 and is currently marketed under the brand name Conjupri.

Dihydropyridine calcium channel blockers are derivatives of 1,4-dihydropyridine that are used as L-type calcium channel blockers. They are used in the treatment of hypertension.

References

  1. Raddino, Riccardo; Poli, Enzo; Pasini, Evasio; Ferrari, Roberto (1992-09-01). "Effects of the novel calcium channel blocker, anipamil, on the isolated rabbit heart". Naunyn-Schmiedeberg's Archives of Pharmacology. 346 (3): 339–344. doi:10.1007/BF00173549. ISSN   0028-1298. PMID   1383837. S2CID   20915840.
  2. 1 2 Pugsley, M.K. (1995-08-11). "Effects of anipamil, a long acting analog of verapamil, in pigs subjected to myocardial ischemia". Life Sciences. 57 (12): 1219–1231. doi:10.1016/0024-3205(95)02070-Y. PMID   7674811.
  3. Lefrandt, J. D.; Heitmann, J.; Sevre, K.; Castellano, M.; Hausberg, M.; Fallon, M.; Fluckiger, L.; Urbigkeit, A.; Rostrup, M. (2001-11-01). "The effects of dihydropyridine and phenylalkylamine calcium antagonist classes on autonomic function in hypertension: the VAMPHYRE study". American Journal of Hypertension. 14 (11 Pt 1): 1083–1089. doi: 10.1016/S0895-7061(01)02218-X . ISSN   0895-7061. PMID   11724204.
  4. 1 2 3 4 Pauletto, Paolo; Santina Da Ros, Marta (1996-07-01). "Anipamil Prevents Intimal Thickening in the Aorta of Hypertensive Rabbits Through Changes in Smooth Muscle Cell Phenotype". American Journal of Hypertension. 9 (7): 687–694. doi: 10.1016/0895-7061(96)00032-5 . PMID   8806982.
  5. 1 2 3 4 5 6 7 8 9 Catapano, A. L.; Maggi, F. M.; Cicerano, U. (1988-03-01). "The Antiatherosclerotic Effect of Anipamil in Cholesterol-Fed Rabbits". Annals of the New York Academy of Sciences. 522 (1 Calcium Antag): 519–521. Bibcode:1988NYASA.522..519C. doi:10.1111/j.1749-6632.1988.tb33391.x. ISSN   0077-8923. S2CID   83705020.