Chloroprocaine

Last updated
Chloroprocaine
Chloroprocaine.svg
Clinical data
Trade names Nesacaine, Iheezo, others
AHFS/Drugs.com Micromedex Detailed Consumer Information
ATC code
Legal status
Legal status
Identifiers
  • 2-diethylaminoethyl-4-amino-2-chloro-benzoate
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C13H19ClN2O2
Molar mass 270.76 g·mol−1
3D model (JSmol)
  • O=C(OCCN(CC)CC)c1ccc(cc1Cl)N
  • InChI=1S/C13H19ClN2O2/c1-3-16(4-2)7-8-18-13(17)11-6-5-10(15)9-12(11)14/h5-6,9H,3-4,7-8,15H2,1-2H3 Yes check.svgY
  • Key:VDANGULDQQJODZ-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Chloroprocaine (trade name Nesacaine, Nesacaine-MPF) (often in the hydrochloride salt form as the aforementioned trade names) is a local anesthetic given by injection during surgical procedures and labor and delivery. Chloroprocaine vasodilates; this is in contrast to cocaine which vasoconstricts. Chloroprocaine is an ester anesthetic. [3]

Contents

Medical uses

Chloroprocaine is used for regional anaesthesia including spinal anaesthesia, caudal anaesthesia and epidural anesthesia. [4] [5]

It is also indicated for local anaesthesia including brachial plexus block, cervical nerve block, occipital nerve block. mandibular nerve block or maxillary nerve block for dental anesthesia, ophthalmic anesthesia via infraorbital nerve block, ulnar nerve block, paravertebral block, intercostal nerve block, sciatic nerve block, stellate ganglion block, lumbar sympathetic block and interdigital block. [5]

It is also used for obstetric anesthesia including pudendal nerve block and paracervical block. [5]

Chloroprocaine is also indicated for ocular surface anesthesia. [2]

Subarachnoid block

Chloroprocaine was developed to meet the need for a short-acting spinal anaesthetic that is reliable and has a favourable safety profile to support the growing need for day-case surgery. Licensed in Europe for surgical procedures up to 40 minutes, chloroprocaine is an ester-type local anaesthetic with the shortest duration of action of all the established local anaesthetics. It has a significantly shorter duration of action than lidocaine and is significantly less toxic. Chloroprocaine has a motor block lasting for 40 minutes, a rapid onset time of 3–5 minutes (9.6 min ± 7.3 min at 40 mg dose; 7.9 min ± 6.0 min at 50 mg dose) and a time to ambulation of 90 minutes without complications, especially lacking transient neurologic symptomatology.

These data are based upon a retrospective review of 672 patients suitable for spinal anaesthesia in surgical procedures less than 60 minutes' duration using 30–40 mg chloroprocaine. The results showed good surgical anaesthesia, a fast onset time, and postoperative mobilization after 90 minutes without complications. [6]

The use of chloroprocaine in the subarachnoid space has been questioned. [7] In the early 1980s, several cases were reported of neurological deficits after inadvertent intrathecal injections intended for epidural delivery. [8] These doses were an order of magnitude higher than is currently used for intrathecal delivery. [9] [10] [11] It is also thought that these deficits were also related to the preservative sodium bisulfite, [12] [13] although this is also controversial. [14] [15]

In recent years, several studies have been published on the safe use of intrathecal chloroprocaine when appropriate dosage is used and with preservative-free preparations. [16] [10]

It is currently approved for intrathecal use in the United States [17] and in Europe. [18]

Obstetrics

Amide-linked local anesthetic agents, such as lidocaine and bupivacaine, can become "trapped" in their ionized forms on the fetal side of the placenta, so their net transfer across the placenta is increased. An ester-linked local anesthetic agent, such as 2-chloroprocaine, is rapidly metabolized, and placental transfer is limited. Since the metabolism of 2-chloroprocaine by fetal plasma is slower than in maternal plasma, the potential for ion trapping exists. Fetal pH is slightly lower than maternal (7.32 to 7.38), thus most unionized drugs are "ion trapped" to a degree, even in a healthy fetus. Chloroprocaine (pKa 8.7) is the drug of choice for epidural analgesia and a decompensating fetus, because it does not participate in ion trapping. Placental transfer of 2-chloroprocaine is not influenced by fetal acidosis. [19]

The in vitro half-life of chloroprocaine is 21 seconds for maternal and 43 seconds for fetal blood. In patients who are homozygous atypical for plasma cholinesterase, chloroprocaine typically exists for two minutes in circulation. [20] [21]

Synthesis

Chloroprocaine synthesis: H.C. Marks, H.I. Rubin, U.S. patent 2,460,139 (1949 to Wallace & Tiernan Inc). Chloroprocaine synthesis.png
Chloroprocaine synthesis: H.C. Marks, H.I. Rubin, U.S. patent 2,460,139 (1949 to Wallace & Tiernan Inc).

The hydrochloride salt of 4-amino-2-chlorobenzoyl chloride is made by the reaction of 2-chloro-4-aminobenzoic acid with thionyl chloride. [22] Synthesis of this drug is then accomplished by directly reacting the product of the last step with the hydrochloride salt of 2-diethylaminoethanol.

Related Research Articles

General anaesthetics are often defined as compounds that induce a loss of consciousness in humans or loss of righting reflex in animals. Clinical definitions are also extended to include an induced coma that causes lack of awareness to painful stimuli, sufficient to facilitate surgical applications in clinical and veterinary practice. General anaesthetics do not act as analgesics and should also not be confused with sedatives. General anaesthetics are a structurally diverse group of compounds whose mechanisms encompass multiple biological targets involved in the control of neuronal pathways. The precise workings are the subject of some debate and ongoing research.

<span class="mw-page-title-main">Anesthesia</span> State of medically-controlled temporary loss of sensation or awareness

Anesthesia or anaesthesia is a state of controlled, temporary loss of sensation or awareness that is induced for medical or veterinary purposes. It may include some or all of analgesia, paralysis, amnesia, and unconsciousness. An individual under the effects of anesthetic drugs is referred to as being anesthetized.

Local anesthesia is any technique to induce the absence of sensation in a specific part of the body, generally for the aim of inducing local analgesia, i.e. local insensitivity to pain, although other local senses may be affected as well. It allows patients to undergo surgical and dental procedures with reduced pain and distress. In many situations, such as cesarean section, it is safer and therefore superior to general anesthesia.

<span class="mw-page-title-main">Local anesthetic</span> Medications to reversibly block pain

A local anesthetic (LA) is a medication that causes absence of all sensation in a specific body part without loss of consciousness, providing local anesthesia, as opposed to a general anesthetic, which eliminates all sensation in the entire body and causes unconsciousness. Local anesthetics are most commonly used to eliminate pain during or after surgery. When it is used on specific nerve pathways, paralysis also can be induced.

<span class="mw-page-title-main">Lidocaine</span> Local anesthetic

Lidocaine, also known as lignocaine and sold under the brand name Xylocaine among others, is a local anesthetic of the amino amide type. It is also used to treat ventricular tachycardia and ventricular fibrillation. When used for local anaesthesia or in nerve blocks, lidocaine typically begins working within several minutes and lasts for half an hour to three hours. Lidocaine mixtures may also be applied directly to the skin or mucous membranes to numb the area. It is often used mixed with a small amount of adrenaline (epinephrine) to prolong its local effects and to decrease bleeding.

<span class="mw-page-title-main">General anaesthesia</span> Medically induced loss of consciousness

General anaesthesia (UK) or general anesthesia (US) is a method of medically inducing loss of consciousness that renders a patient unarousable even with painful stimuli. This effect is achieved by administering either intravenous or inhalational general anaesthetic medications, which often act in combination with an analgesic and neuromuscular blocking agent. Spontaneous ventilation is often inadequate during the procedure and intervention is often necessary to protect the airway. General anaesthesia is generally performed in an operating theater to allow surgical procedures that would otherwise be intolerably painful for a patient, or in an intensive care unit or emergency department to facilitate endotracheal intubation and mechanical ventilation in critically ill patients. Depending on the procedure, general anaesthesia may be optional or required. Regardless of whether a patient may prefer to be unconscious or not, certain pain stimuli could result in involuntary responses from the patient that may make an operation extremely difficult. Thus, for many procedures, general anaesthesia is required from a practical perspective.

<span class="mw-page-title-main">Spinal anaesthesia</span> Form of neuraxial regional anaesthesia

Spinal anaesthesia, also called spinal block, subarachnoid block, intradural block and intrathecal block, is a form of neuraxial regional anaesthesia involving the injection of a local anaesthetic or opioid into the subarachnoid space, generally through a fine needle, usually 9 cm (3.5 in) long. It is a safe and effective form of anesthesia usually performed by anesthesiologists that can be used as an alternative to general anesthesia commonly in surgeries involving the lower extremities and surgeries below the umbilicus. The local anesthetic with or without an opioid injected into the cerebrospinal fluid provides locoregional anaesthesia: true anaesthesia, motor, sensory and autonomic (sympathetic) blockade. Administering analgesics in the cerebrospinal fluid without a local anaesthetic produces locoregional analgesia: markedly reduced pain sensation, some autonomic blockade, but no sensory or motor block. Locoregional analgesia, due to mainly the absence of motor and sympathetic block may be preferred over locoregional anaesthesia in some postoperative care settings. The tip of the spinal needle has a point or small bevel. Recently, pencil point needles have been made available.

Combined spinal and epidural anaesthesia is a regional anaesthetic technique, which combines the benefits of both spinal anaesthesia and epidural anaesthesia and analgesia. The spinal component gives a rapid onset of a predictable block. The indwelling epidural catheter gives the ability to provide long lasting analgesia and to titrate the dose given to the desired effect.

<span class="mw-page-title-main">Epidural administration</span> Medication injected into the epidural space of the spine

Epidural administration is a method of medication administration in which a medicine is injected into the epidural space around the spinal cord. The epidural route is used by physicians and nurse anesthetists to administer local anesthetic agents, analgesics, diagnostic medicines such as radiocontrast agents, and other medicines such as glucocorticoids. Epidural administration involves the placement of a catheter into the epidural space, which may remain in place for the duration of the treatment. The technique of intentional epidural administration of medication was first described in 1921 by Spanish military surgeon Fidel Pagés.

<span class="mw-page-title-main">Remifentanil</span> Synthetic opioid analgesic

Remifentanil, marketed under the brand name Ultiva is a potent, short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. Remifentanil is used for sedation as well as combined with other medications for use in general anesthesia. The use of remifentanil has made possible the use of high-dose opioid and low-dose hypnotic anesthesia, due to synergism between remifentanil and various hypnotic drugs and volatile anesthetics.

<span class="mw-page-title-main">Bupivacaine</span> Local anaesthetic drug

Bupivacaine, marketed under the brand name Marcaine among others, is a medication used to decrease sensation in a specific small area. In nerve blocks, it is injected around a nerve that supplies the area, or into the spinal canal's epidural space. It is available mixed with a small amount of epinephrine to increase the duration of its action. It typically begins working within 15 minutes and lasts for 2 to 8 hours.

<span class="mw-page-title-main">Nerve block</span> Deliberate inhibition of nerve impulses

Nerve block or regional nerve blockade is any deliberate interruption of signals traveling along a nerve, often for the purpose of pain relief. Local anesthetic nerve block is a short-term block, usually lasting hours or days, involving the injection of an anesthetic, a corticosteroid, and other agents onto or near a nerve. Neurolytic block, the deliberate temporary degeneration of nerve fibers through the application of chemicals, heat, or freezing, produces a block that may persist for weeks, months, or indefinitely. Neurectomy, the cutting through or removal of a nerve or a section of a nerve, usually produces a permanent block. Because neurectomy of a sensory nerve is often followed, months later, by the emergence of new, more intense pain, sensory nerve neurectomy is rarely performed.

<span class="mw-page-title-main">Articaine</span> Chemical compound

Articaine is a dental amide-type local anesthetic. It is the most widely used local anesthetic in a number of European countries and is available in many countries. It is the only local anaesthetic to contain a thiophene ring, meaning it can be described as 'thiophenic'; this conveys lipid solubility.

<span class="mw-page-title-main">Levobupivacaine</span> Chemical compound

Levobupivacaine (rINN) is a local anaesthetic drug indicated for minor and major surgical anaesthesia and pain management. It is a long-acting amide-type local anaesthetic that blocks nerve impulses by inhibiting sodium ion influx into the nerve cells. Levobupivacaine is the S-enantiomer of racemic bupivacaine and therefore similar in pharmacological effects. The drug typically starts taking effect within 15 minutes and can last up to 16 hours depending on factors such as site of administration and dosage.

Continuous wound infiltration (CWI) refers to the continuous infiltration of a local anesthetic into a surgical wound to aid in pain management during post-operative recovery.

<span class="mw-page-title-main">Brachial plexus block</span>

Brachial plexus block is a regional anesthesia technique that is sometimes employed as an alternative or as an adjunct to general anesthesia for surgery of the upper extremity. This technique involves the injection of local anesthetic agents in close proximity to the brachial plexus, temporarily blocking the sensation and ability to move the upper extremity. The subject can remain awake during the ensuing surgical procedure, or they can be sedated or even fully anesthetized if necessary.

The following outline is provided as an overview of and topical guide to anesthesia:

<span class="mw-page-title-main">History of neuraxial anesthesia</span>

The history of neuraxial anaesthesia dates back to the late 1800s and is closely intertwined with the development of anaesthesia in general. Neuraxial anaesthesia, in particular, is a form of regional analgesia placed in or around the Central Nervous System, used for pain management and anaesthesia for certain surgeries and procedures.

Obstetric anesthesia or obstetric anesthesiology, also known as ob-gyn anesthesia or ob-gyn anesthesiology, is a sub-specialty of anesthesiology that provides peripartum pain relief (analgesia) for labor and anesthesia for cesarean deliveries ('C-sections').

<span class="mw-page-title-main">Caudal anaesthesia</span> Form of neuraxial regional anaesthesia

Caudal anaesthesia is a form of neuraxial regional anaesthesia conducted by accessing the epidural space via the sacral hiatus. It is typically used in paediatrics to provide peri- and post-operative analgesia for surgeries below the umbilicus. In adults, it can be used in the context of anorectal surgery or for chronic low back pain management.

References

  1. "Nesacaine- chloroprocaine hydrochloride injection, solution Nesacaine MPF- chloroprocaine hydrochloride injection, solution". DailyMed. 1 September 2022. Retrieved 21 January 2023.
  2. 1 2 "Iheezo- chloroprocaine hydrochloride ophthalmic gel gel". DailyMed. 27 September 2022. Retrieved 21 January 2023.
  3. "Chloroprocaine". Drug Bank. Archived from the original on 2018-09-20. Retrieved 2009-10-21.
  4. Sintetica Limited (9 March 2017). "Ampres 10 mg/ml solution for injection". EMC. Archived from the original on 19 August 2019. Retrieved 2 December 2018.
  5. 1 2 3 Physicians' Desk Reference. "chloroprocaine hydrochloride". USA: PDR.net. Archived from the original on 2019-08-19. Retrieved 2018-12-02.
  6. Palas T (2009). "Ampres (chloroprocaine) Summary of Product Characteristics". Perimed. 3 (2): 31–34. Cloroprocaina in chirurgia ambulatoriale: uno studio osservazionale
  7. Drasner K (February 2005). "Chloroprocaine spinal anesthesia: back to the future?". Anesthesia & Analgesia. 100 (2): 549–52. doi: 10.1213/01.ANE.0000143382.89888.C3 . PMID   15673892.
  8. Reisner LS, Hochman BN, Plumer MH (June 1980). "Persistent neurologic deficit and adhesive arachnoiditis following intrathecal 2-chloroprocaine injection". Anesthesia and Analgesia. 59 (6): 452–4. doi:10.1213/00000539-198006000-00014. PMID   7189987.
  9. Förster JG, Kallio H, Rosenberg PH, Harilainen A, Sandelin J, Pitkänen MT (March 2011). "Chloroprocaine vs. articaine as spinal anaesthetics for day-case knee arthroscopy". Acta Anaesthesiologica Scandinavica. 55 (3): 273–81. doi:10.1111/j.1399-6576.2010.02325.x. PMID   21039353. S2CID   205430566.
  10. 1 2 Förster JG, Rosenberg PH, Harilainen A, Sandelin J, Pitkänen MT (August 2013). "Chloroprocaine 40 mg produces shorter spinal block than articaine 40 mg in day-case knee arthroscopy patients". Acta Anaesthesiologica Scandinavica. 57 (7): 911–9. doi:10.1111/aas.12107. PMID   23521140. S2CID   42930157.
  11. Lacasse MA, Roy JD, Forget J, Vandenbroucke F, Seal RF, Beaulieu D, McCormack M, Massicotte L (April 2011). "Comparison of bupivacaine and 2-chloroprocaine for spinal anesthesia for outpatient surgery: a double-blind randomized trial". Canadian Journal of Anaesthesia. 58 (4): 384–91. doi: 10.1007/s12630-010-9450-x . PMID   21203878. S2CID   31870857.
  12. Gissen AJ, Datta S, Lambert D (July 1984). "The chloroprocaine controversy: II. Is chloroprocaine neurotoxic?". Regional Anesthesia and Pain Medicine. 9 (3): 135–45. doi:10.1136/rapm-00115550-198409030-00004 (inactive 2024-09-12).{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  13. Wang BC, Li D, Hiller JM, Simon EJ, Budzilovich G, Hillman DE (December 1992). "Lumbar subarachnoid ethylenediaminetetraacetate induces hindlimb tetanic contractions in rats: prevention by CaCl2 pretreatment; observation of spinal nerve root degeneration". Anesthesia and Analgesia. 75 (6): 895–9. doi: 10.1213/00000539-199212000-00006 . PMID   1443708.
  14. Taniguchi M, Bollen AW, Drasner K (January 2004). "Sodium bisulfite: scapegoat for chloroprocaine neurotoxicity?". Anesthesiology. 100 (1): 85–91. doi: 10.1097/00000542-200401000-00016 . PMID   14695728. S2CID   9604835.
  15. Cabré F, Marín C, Cascante M, Canela EI (April 1990). "Occurrence and comparison of sulfite oxidase activity in mammalian tissues". Biochemical Medicine and Metabolic Biology. 43 (2): 159–62. doi:10.1016/0885-4505(90)90021-r. PMID   2346671.
  16. Goldblum E, Atchabahian A (May 2013). "The use of 2-chloroprocaine for spinal anaesthesia". Acta Anaesthesiologica Scandinavica. 57 (5): 545–52. doi:10.1111/aas.12071. PMID   23320599. S2CID   525005.
  17. "Clorotekal: Chloroprocaine Hydrochloride". Drugs@FDA: FDA-Approved Drugs. Archived from the original on 2020-10-19. Retrieved 2018-05-29.
  18. "Rediscovered Local Holds Promise for Spinal Anesthesia". Anesthesiology News. McMahon Publishing. 5 June 2013. Archived from the original on 29 September 2022. Retrieved 20 September 2013.
  19. Philipson EH, Kuhnert BR, Syracuse CD (February 1985). "Fetal acidosis, 2-chloroprocaine, and epidural anesthesia for cesarean section". American Journal of Obstetrics and Gynecology. 151 (3): 322–4. doi:10.1016/0002-9378(85)90295-9. PMID   3970100.
  20. Chestnut DH (2004). Obstetric Anesthesia: Principles and Practice (3rd ed.). Philadelphia: Elsevier Mosby. p. 333. ISBN   978-0-323-02357-3.
  21. Hughes SC, Levinson G, Rosen MA, eds. (2002). Shnider and Levinson's Anesthesia for Obstetrics (4th ed.). Philadelphia: Lippincott Williams & Wilkins. p. 75. ISBN   978-0-683-30665-1.
  22. Vardanyan RS, Hruby VJ (January 2006). "Local anesthetics". Synthesis of Essential Drugs. Amsterdam: Elsevier. pp. 9–18. doi:10.1016/b978-044452166-8/50002-9. ISBN   978-0-444-52166-8.