Diallyl trisulfide

Last updated
Diallyl trisulfide
Diallyl trisulfide.svg
Names
Preferred IUPAC name
Di(prop-2-en-1-yl)trisulfane
Other names
Allitridin
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.016.462 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 218-107-8
PubChem CID
UNII
  • InChI=1S/C6H10S3/c1-3-5-7-9-8-6-4-2/h3-4H,1-2,5-6H2
    Key: UBAXRAHSPKWNCX-UHFFFAOYSA-N
  • InChI=1/C6H10S3/c1-3-5-7-9-8-6-4-2/h3-4H,1-2,5-6H2
    Key: UBAXRAHSPKWNCX-UHFFFAOYAC
  • C=CCSSSCC=C
Properties
C6H10S3
Molar mass 178.33 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diallyl trisulfide (DATS), also known as Allitridin, is an organosulfur compound with the formula S(SCH2CH=CH2)2. It is one of several compounds produced by hydrolysis of allicin, including diallyl disulfide and diallyl tetrasulfide; DATS is one of the most potent. [1] [ clarification needed ]

Biological applications

DATS has been shown to selectively kill cancerous cells in the prostate and breast, [2] [3] leaving healthy cells unharmed. This effect is attributed to increased reactive oxygen species (ROS) within cancer cells, increased the number of cells that arrest in the G2 phase of mitosis, and promote an increase in caspase-3 activity. [4] These effects appear to contribute to the apoptosis of cancer cells and a decrease in cancer cell proliferation.

DATS can be metabolized by glutathione in red blood cells to form hydrogen sulfide (H2S). [5] This conversion occurs at a consistent rate over a prolonged period of time, rendering DATS a good source of H2S. [6] H2S is a cardioprotective agent that has antioxidant, anti-inflammatory, and anti-apoptotic effects. [6] [7] A major topic of research is the impact of hydrogen sulfide on reducing myocardial ischemia-reperfusion injury. Reperfusion injury is a significant threat to myocardial function that arises with the reintroduction of blood flow to the heart following an ischemic episode. Reperfusion triggers an inflammatory response and often results in oxidative damage. H2S decreases injury through many different effects such a decrease in oxidative stress, maintenance of mitochondrial function, and increased eNOS (endothelial nitric oxide synthase) activation. [6] eNOS is activated via phosphorylation by H2S through the activation of the PI3K/Akt pathway, which increases the formation and bioavailability of nitric oxide (NO). [6] This negatively impacts mitochondria functionality. The mitochondria has been known to protect the heart from ischemic-reperfusion injury through the opening of the ATP-sensitive K+ channel. [5] [8] This causes vasodilation and improves hemodynamics. [5]

DATS is a promising treatment for cardiac arrhythmias through its ability to change the opening of the human ether-à-go-go-related (hERG) channel. hERG is the pore-forming subunit of potassium channels that create delayed rectifier potassium ion currents in many cells, including cardiac myocytes. [9] The delayed rectifier potassium ion current is largely responsible for the repolarization of ventricular cardiac myocytes by permitting potassium efflux. DATS causes a decrease in the steady-state inactivation, alters deactivation, and impairs trafficking of the hERG channel from the endoplasmic reticulum to the plasma membrane of the cell. [10] This decreases the amount of functional potassium ion rectifier channels on the cell membrane and thus, slows depolarization. [10] However, hERG trafficking impairment has also been shown to cause arrhythmias due to the development of long QT syndrome and should be considered in drug development. [10]

Related Research Articles

<span class="mw-page-title-main">Reperfusion injury</span> Tissue damage after return of blood supply following ischemia or hypoxia

Reperfusion injury, sometimes called ischemia-reperfusion injury (IRI) or reoxygenation injury, is the tissue damage caused when blood supply returns to tissue after a period of ischemia or lack of oxygen. The absence of oxygen and nutrients from blood during the ischemic period creates a condition in which the restoration of circulation results in inflammation and oxidative damage through the induction of oxidative stress rather than restoration of normal function.

hERG Mammalian protein found in humans

hERG is a gene that codes for a protein known as Kv11.1, the alpha subunit of a potassium ion channel. This ion channel is best known for its contribution to the electrical activity of the heart: the hERG channel mediates the repolarizing IKr current in the cardiac action potential, which helps coordinate the heart's beating.

<span class="mw-page-title-main">Lipid emulsion</span>

Lipid emulsion or fat emulsion refers to an emulsion of fat for human intravenous use, to administer nutrients to critically-ill patients that cannot consume food. It is often referred to by the brand name of the most commonly used version, Intralipid, which is an emulsion containing soybean oil, egg phospholipids and glycerin, and is available in 10%, 20% and 30% concentrations. The 30% concentration is not approved for direct intravenous infusion, but should be mixed with amino acids and dextrose as part of a total nutrient admixture.

<span class="mw-page-title-main">Alliin</span> Chemical compound

Alliin is a sulfoxide that is a natural constituent of fresh garlic. It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene. Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds.

Gasotransmitters is a class of neurotransmitters. The molecules are distinguished from other bioactive endogenous gaseous signaling molecules based on a need to meet distinct characterization criteria. Currently, only nitric oxide, carbon monoxide, and hydrogen sulfide are accepted as gasotransmitters.

<span class="mw-page-title-main">Diallyl disulfide</span> Chemical compound

Diallyl disulfide is an organosulfur compound derived from garlic and a few other genus Allium plants. Along with diallyl trisulfide and diallyl tetrasulfide, it is one of the principal components of the distilled oil of garlic. It is a yellowish liquid which is insoluble in water and has a strong garlic odor. It is produced during the decomposition of allicin, which is released upon crushing garlic and other plants of the family Alliaceae. Diallyl disulfide has many of the health benefits of garlic, but it is also an allergen causing garlic allergy. Highly diluted, it is used as a flavoring in food. It decomposes in the human body into other compounds such as allyl methyl sulfide.

Ischemic preconditioning (IPC) is an experimental technique for producing resistance to the loss of blood supply, and thus oxygen, to tissues of many types. In the heart, IPC is an intrinsic process whereby repeated short episodes of ischaemia protect the myocardium against a subsequent ischaemic insult. It was first identified in 1986 by Murry et al. This group exposed anesthetised open-chest dogs to four periods of 5 minute coronary artery occlusions followed by a 5-minute period of reperfusion before the onset of a 40-minute sustained occlusion of the coronary artery. The control animals had no such period of “ischaemic preconditioning” and had much larger infarct sizes compared with the dogs that did. The exact molecular pathways behind this phenomenon have yet to be fully understood.

An ATP-sensitive potassium channel is a type of potassium channel that is gated by intracellular nucleotides, ATP and ADP. ATP-sensitive potassium channels are composed of Kir6.x-type subunits and sulfonylurea receptor (SUR) subunits, along with additional components. KATP channels are found in the plasma membrane; however some may also be found on subcellular membranes. These latter classes of KATP channels can be classified as being either sarcolemmal ("sarcKATP"), mitochondrial ("mitoKATP"), or nuclear ("nucKATP").

<span class="mw-page-title-main">SOD2</span> Enzyme

Superoxide dismutase 2, mitochondrial (SOD2), also known as manganese-dependent superoxide dismutase (MnSOD), is an enzyme which in humans is encoded by the SOD2 gene on chromosome 6. A related pseudogene has been identified on chromosome 1. Alternative splicing of this gene results in multiple transcript variants. This gene is a member of the iron/manganese superoxide dismutase family. It encodes a mitochondrial protein that forms a homotetramer and binds one manganese ion per subunit. This protein binds to the superoxide byproducts of oxidative phosphorylation and converts them to hydrogen peroxide and diatomic oxygen. Mutations in this gene have been associated with idiopathic cardiomyopathy (IDC), premature aging, sporadic motor neuron disease, and cancer.

<span class="mw-page-title-main">KCNB1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, Shab-related subfamily, member 1, also known as KCNB1 or Kv2.1, is a protein that, in humans, is encoded by the KCNB1 gene.

<span class="mw-page-title-main">ENDOG</span> Protein-coding gene in the species Homo sapiens

Endonuclease G, mitochondrial is an enzyme that in humans is encoded by the ENDOG gene. This protein primarily participates in caspase-independent apoptosis via DNA degradation when translocating from the mitochondrion to nucleus under oxidative stress. As a result, EndoG has been implicated in cancer, aging, and neurodegenerative diseases such as Parkinson’s disease (PD). Regulation of its expression levels thus holds potential to treat or ameliorate those conditions.

<span class="mw-page-title-main">Acadesine</span> Chemical compound

Acadesine (INN), also known as 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, AICA-riboside, and AICAR, is an AMP-activated protein kinase activator which is used for the treatment of acute lymphoblastic leukemia and may have applications in treating other disorders such as diabetes. AICAR has been used clinically to treat and protect against cardiac ischemic injury. The drug was first used in the 1980s as a method to preserve blood flow to the heart during surgery.

<span class="mw-page-title-main">VDAC2</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent anion-selective channel protein 2 is a protein that in humans is encoded by the VDAC2 gene on chromosome 10. This protein is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms. VDACs are generally involved in the regulation of cell metabolism, mitochondrial apoptosis, and spermatogenesis. Additionally, VDAC2 participates in cardiac contractions and pulmonary circulation, which implicate it in cardiopulmonary diseases. VDAC2 also mediates immune response to infectious bursal disease (IBD).

<span class="mw-page-title-main">E-4031</span> Chemical compound

E-4031 is an experimental class III antiarrhythmic drug that blocks potassium channels of the hERG-type.

<span class="mw-page-title-main">Cariporide</span> Chemical compound

Cariporide is a selective Na+/H+ exchange inhibitor. Cariporide has been shown to actively suppress the cell death caused by oxidative stress.

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease, as well as treatment for the damage that occurs to the heart after MI. After MI, the myocardium suffers from reperfusion injury which leads to death of cardiomyocytes and detrimental remodelling of the heart, consequently reducing proper cardiac function. Transfection of cardiac myocytes with human HGF reduces ischemic reperfusion injury after MI. The benefits of HGF therapy include preventing improper remodelling of the heart and ameliorating heart dysfunction post-MI.

<span class="mw-page-title-main">Rottlerin</span> Chemical compound

Rottlerin (mallotoxin) is a polyphenol natural product isolated from the Asian tree Mallotus philippensis. Rottlerin displays a complex spectrum of pharmacology.

Hydrogen sulfide is produced in small amounts by some cells of the mammalian body and has a number of biological signaling functions. Only two other such gases are currently known: nitric oxide (NO) and carbon monoxide (CO).

Cardioprotection includes all mechanisms and means that contribute to the preservation of the heart by reducing or even preventing myocardial damage. Cardioprotection encompasses several regimens that have shown to preserve function and viability of cardiac muscle cell tissue subjected to ischemic insult or reoxygenation. Cardioprotection includes strategies that are implemented before an ischemic event, during an ischemic event and after the event and during reperfusion. These strategies can be further stratified by performing the intervention locally or remotely, creating classes of conditioning known as remote ischemic PC (RIPC), remote ischemic PostC and remote ischemic PerC. Classical (local) preconditioning has an early phase with an immediate onset lasting 2–3 hours that protects against myocardial infarction. The early phase involves post-translational modification of preexisting proteins, brought about by the activation of G protein-coupled receptors as well as downstream MAPK's and PI3/Akt. These signaling events act on the ROS-generating mitochondria, activate PKCε and the Reperfusion Injury Salvage Kinase (RISK) pathway, preventing mitochondrial permeability transition pore (MTP) opening. The late phase with an onset of 12–24 hours that lasts 3–4 days and protects against both infarction and reversible postischemic contractile dysfunction, termed myocardial stunning. This phase involves the synthesis of new cardioprotective proteins stimulated by nitric oxide (NO), ROS and adenosine acting on kinases such as PKCε and Src, which in turn activate gene transcription and upregulation of late PC molecular players.

Kidney ischemia is a disease with a high morbidity and mortality rate. Blood vessels shrink and undergo apoptosis which results in poor blood flow in the kidneys. More complications happen when failure of the kidney functions result in toxicity in various parts of the body which may cause septic shock, hypovolemia, and a need for surgery. What causes kidney ischemia is not entirely known, but several pathophysiology relating to this disease have been elucidated. Possible causes of kidney ischemia include the activation of IL-17C and hypoxia due to surgery or transplant. Several signs and symptoms include injury to the microvascular endothelium, apoptosis of kidney cells due to overstress in the endoplasmic reticulum, dysfunctions of the mitochondria, autophagy, inflammation of the kidneys, and maladaptive repair.

References

  1. Block, Eric (2010). Garlic and Other Alliums: The Lore and the Science. Royal Society of Chemistry. ISBN   9780854041909.[ page needed ]
  2. Na, Hye-Kyung; Kim, Eun-Hee; Choi, Min-Ah; Park, Jong-Min; Kim, Do-Hee; Surh, Young-Joon (2012). "Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1". Biochemical Pharmacology. 84 (10): 1241–1250. doi:10.1016/j.bcp.2012.08.024. PMID   22981381.
  3. Xiao, Dong; Singh, Shivendra V (2006). "Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells". Carcinogenesis. 27 (3): 533–540. doi: 10.1093/carcin/bgi228 . PMID   16169930.
  4. Seki, T; Hosono, T; Hosono-Fukao, T; Inada, K; Tanaka, R; Ogihara, J; Ariga, T (2008). "Anticancer effects of diallyl trisulfide derived from garlic" (PDF). Asia Pacific Journal of Clinical Nutrition. 17 Suppl 1: 249–52. PMID   18296348.
  5. 1 2 3 Benavides, G. A; Squadrito, G. L; Mills, R. W; Patel, H. D; Isbell, T. S; Patel, R. P; Darley-Usmar, V. M; Doeller, J. E; Kraus, D. W (2007). "Hydrogen sulfide mediates the vasoactivity of garlic". Proceedings of the National Academy of Sciences. 104 (46): 17977–17982. doi: 10.1073/pnas.0705710104 . PMC   2084282 . PMID   17951430.
  6. 1 2 3 4 Predmore, Benjamin L; Kondo, Kazuhisa; Bhushan, Shashi; Zlatopolsky, Maxim A; King, Adrienne L; Aragon, Juan Pablo; Grinsfelder, D Bennett; Condit, Marah E; Lefer, David J (2012). "The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability". American Journal of Physiology. Heart and Circulatory Physiology. 302 (11): H2410–H2418. doi:10.1152/ajpheart.00044.2012. PMC   3378306 . PMID   22467307.
  7. Lavu, Madhav; Bhushan, Shashi; Lefer, David J (2011). "Hydrogen sulfide-mediated cardioprotection: Mechanisms and therapeutic potential". Clinical Science. 120 (6): 219–229. doi:10.1042/cs20100462. PMID   21126235.
  8. Weerateerangkul, Punate; Chattipakorn, Siriporn; Chattipakorn, Nipon (2011). "Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia-reperfusion injury". Medical Science Monitor . 17 (2): RA44–RA52. doi:10.12659/msm.881385. PMC   3524696 . PMID   21278703.
  9. Vandenberg, Jamie I; Perry, Matthew D; Perrin, Mark J; Mann, Stefan A; Ke, Ying; Hill, Adam P (2012). "HERG K+ Channels: Structure, Function, and Clinical Significance". Physiological Reviews. 92 (3): 1393–1478. doi:10.1152/physrev.00036.2011. PMID   22988594.
  10. 1 2 3 Li, Guoliang; Cheng, Gong; Wu, Jine; Ma, Shuting; Zhang, Aifeng; Han, Wenqi; Sun, Chaofeng (2014). "Allitridin Reduces IKr Current by Disrupting the Trafficking of Human Ether-à-Go-Go-Related Gene Channels". Cardiology. 128 (1): 1–8. doi:10.1159/000357232. PMID   24504171. S2CID   34673800.