Budiodarone

Last updated
Budiodarone
Budiodarone.svg
Clinical data
ATC code
  • None
Legal status
Legal status
Identifiers
  • [(2S)-butan-2-yl] 2-[3-[4-[2-(diethylamino)ethoxy]-3,5-diiodobenzoyl]-1-benzofuran-2-yl]acetate
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C27H31I2NO5
Molar mass 703.356 g·mol−1
3D model (JSmol)
  • Ic1cc(cc(I)c1OCCN(CC)CC)C(=O)c2c3ccccc3oc2CC(=O)O[C@@H](C)CC
  • InChI=1S/C27H31I2NO5/c1-5-17(4)34-24(31)16-23-25(19-10-8-9-11-22(19)35-23)26(32)18-14-20(28)27(21(29)15-18)33-13-12-30(6-2)7-3/h8-11,14-15,17H,5-7,12-13,16H2,1-4H3/t17-/m0/s1
  • Key:ZXOSVKYCXLTVGS-KRWDZBQOSA-N

Budiodarone (ATI-2042) is an antiarrhythmic agent and chemical analog of amiodarone that is currently being studied in clinical trials. Amiodarone is considered the most effective antiarrhythmic drug available, [1] [2] [3] but its adverse side effects, including hepatic, pulmonary and thyroid toxicity as well as multiple drug interactions, [4] are discouraging its use. Budiodarone only differs in structure from amiodarone through the presence of a sec-butyl acetate side chain at position 2 of the benzofuran moiety. [5] This side chain allows for budiodarone to have a shorter half-life in the body than amiodarone (7 hours versus 35–68 days) which allows it to have a faster onset of action and metabolism while still maintaining similar electrophysiological activity. [4] The faster metabolism of budiodarone allows for fewer adverse side effects than amiodarone principally due to decreased levels of toxicity in the body.

Contents

Creation of arrythmias

Arrhythmias may be caused by changes in ion channel mRNA and protein expression which modify action potential generation through dysfunctional channels and increase the likelihood of inappropriate electrical re-entry (electrical stimulus entering back into the cell to prematurely start the next action potential). [6] The increase in electrical re-entry causes the fibrillation or uncontrolled action potential discord of atrial myocytes. Arrhythmias have historically been treated using atrial ablation or antiarrhythmic drugs to decrease electrical re-entry and therefore fibrillation.

Treatment of arrhythmias

Budiodarone holds much promise as an antiarrhythmic drug to prevent fibrillation. As a drug that spans over many of antiarrhythmic drug classes, the electrophysiological activity of budiodarone includes: [4]

Inhibition of potassium, sodium and calcium channels

Through inhibiting potassium channels, budiodarone causes a decreased efflux of potassium out of the myocyte during the refractory period of its action potential, increasing the time it takes to reach the resting membrane potential.

Through blocking sodium channels, budiodarone causes a decrease in sodium influx into myocytes during the depolarization period of its action potential.

Through blocking calcium channels, budiodarone causes a decrease in calcium influx into myocytes, decreasing intracellular calcium and decreasing cardiac contractility, which is beneficial in preventing arrhythmias, but detrimental in ventricular contraction.

Increase in atrial myocyte refractory period

Through prolonging the refractory and depolarization periods of the action potential, there is a decreased likelihood that electrical re-entry will occur.

Increased stimulus-to-atrium and atrium-to-bundle of his intervals

Increasing the time interval between stimulus to atrium and/or atrium to bundle of his in action potential conduction slows the rate of myocyte contraction, thereby slowing heart rate.

Increased MAPD90 and QT-intervals

Increasing the time interval of MAPD90 (response of monophasic action potential duration at 90% repolarization)in action potential conduction, slowing the rate of myocyte contraction, thereby slowing heart rate.

Dose-dependent decrease in heart rate

A decrease in heart rate reduces the risk of atrial fibrillation.

Clinical trials

Preliminary trials of budiodarone have administered the drug orally as a tartrate salt in amounts ranging from 200–800 mg bid. [7] [8] Evidence has shown that 400–600 mg bid doses were associated with the highest reduction in atrial fibrillation burden (54.4% and 75% respectively) [8] while remaining free of the adverse side effects common with amiodarone. [7] In addition to reductions in atrial fibrillation burden, similar dose-dependent reductions in the number of atrial fibrillation episodes and the duration of atrial fibrillation episodes have been demonstrated. [7] [8]

There has also been evidence of prolonged budiodarone cardiac effect days after drug discontinuation as the atrial fibrillation baseline measurements were not reached in washout periods. [7] This suggests that budiodarone may promote atrial re-modelling to improve malfunctioning ion channels that once potentiated fibrillation.

Future use

Data on the effects of long-term budiodarone are not yet available. The completion of current clinical trials will examine chronic budiodarone use to confirm or deny its use as an effective and safe antiarrhythmic drug.

See also

Related Research Articles

<span class="mw-page-title-main">Cardioversion</span> Conversion of a cardiac arrhythmia to a normal rhythm using an electrical shock or medications

Cardioversion is a medical procedure by which an abnormally fast heart rate (tachycardia) or other cardiac arrhythmia is converted to a normal rhythm using electricity or drugs. Synchronized electrical cardioversion uses a therapeutic dose of electric current to the heart at a specific moment in the cardiac cycle, restoring the activity of the electrical conduction system of the heart. Pharmacologic cardioversion, also called chemical cardioversion, uses antiarrhythmia medication instead of an electrical shock.


Antiarrhythmic agents, also known as cardiac dysrhythmia medications, are a class of drugs that are used to suppress abnormally fast rhythms (tachycardias), such as atrial fibrillation, supraventricular tachycardia and ventricular tachycardia.

<span class="mw-page-title-main">Short QT syndrome</span> Medical condition

Short QT syndrome (SQT) is a very rare genetic disease of the electrical system of the heart, and is associated with an increased risk of abnormal heart rhythms and sudden cardiac death. The syndrome gets its name from a characteristic feature seen on an electrocardiogram (ECG) – a shortening of the QT interval. It is caused by mutations in genes encoding ion channels that shorten the cardiac action potential, and appears to be inherited in an autosomal dominant pattern. The condition is diagnosed using a 12-lead ECG. Short QT syndrome can be treated using an implantable cardioverter-defibrillator or medications including quinidine. Short QT syndrome was first described in 2000, and the first genetic mutation associated with the condition was identified in 2004.

<span class="mw-page-title-main">Amiodarone</span> Antiarrhythmic medication used for various types of irregular heartbeats

Amiodarone is an antiarrhythmic medication used to treat and prevent a number of types of cardiac dysrhythmias. This includes ventricular tachycardia (VT), ventricular fibrillation (VF), and wide complex tachycardia, as well as atrial fibrillation and paroxysmal supraventricular tachycardia. Evidence in cardiac arrest, however, is poor. It can be given by mouth, intravenously, or intraosseously. When used by mouth, it can take a few weeks for effects to begin.

<span class="mw-page-title-main">Flecainide</span> Antiarrhythmic medication used to prevent and treat tachyarrhythmias

Flecainide is a medication used to prevent and treat abnormally fast heart rates. This includes ventricular and supraventricular tachycardias. Its use is only recommended in those with dangerous arrhythmias or when significant symptoms cannot be managed with other treatments. Its use does not decrease a person's risk of death. It is taken by mouth or injection into a vein.

<span class="mw-page-title-main">Sotalol</span> Medication

Sotalol, sold under the brand name Betapace among others, is a medication used to treat and prevent abnormal heart rhythms. Evidence does not support a decreased risk of death with long term use. It is taken by mouth or given by injection into a vein.

<span class="mw-page-title-main">Azimilide</span> Chemical compound

Azimilide is a class ΙΙΙ antiarrhythmic drug. The agents from this heterogeneous group have an effect on the repolarization, they prolong the duration of the action potential and the refractory period. Also they slow down the spontaneous discharge frequency of automatic pacemakers by depressing the slope of diastolic depolarization. They shift the threshold towards zero or hyperpolarize the membrane potential. Although each agent has its own properties and will have thus a different function.

<span class="mw-page-title-main">Lorcainide</span> Antiarrythmic agent

Lorcainide is a Class 1c antiarrhythmic agent that is used to help restore normal heart rhythm and conduction in patients with premature ventricular contractions, ventricular tachycardiac and Wolff–Parkinson–White syndrome. Lorcainide was developed by Janssen Pharmaceutica (Belgium) in 1968 under the commercial name Remivox and is designated by code numbers R-15889 or Ro 13-1042/001. It has a half-life of 8.9 +- 2.3 hrs which may be prolonged to 66 hrs in people with cardiac disease.

<span class="mw-page-title-main">Dronedarone</span> Drug

Dronedarone, sold under the brand name Multaq, is a class III antiarrhythmic medication developed by Sanofi-Aventis. It was approved by the FDA on July 2, 2009. Besides being indicated in arrhythmias, it was recommended as an alternative to amiodarone for the treatment of atrial fibrillation and atrial flutter in people whose hearts have either returned to normal rhythm or who undergo drug therapy or electric shock treatment i.e. direct current cardioversion (DCCV) to maintain normal rhythm. It is a class III antiarrhythmic drug. In the United States, the FDA approved label includes a claim for reducing hospitalization, but not for reducing mortality, as a reduction in mortality was not demonstrated in the clinical development program. A trial of the drug in heart failure was stopped as an interim analysis showed a possible increase in heart failure deaths, in patients with moderate to severe CHF.

<span class="mw-page-title-main">Tedisamil</span> Chemical compound

Tedisamil (3,7-dicyclopropylmethyl-9,9-tetramethylene-3,7-diazabicyclo-3,3,1-nonane) is an experimental class III antiarrhythmic agent currently being investigated for the treatment of atrial fibrillation. Tedisamil blocks multiple types of potassium channels in the heart resulting in slowed heart rate. While the effects of tedisamil have been demonstrated in both atrial and ventricular muscle, repolarization is prolonged more efficiently in the atria. Tedisamil is administered intravenously and has a half-life of approximately 8 –13 hours in circulation. Tedisamil is being developed as an alternative to other antiarrhythmics as incidence of additional arrhythmic events is lower compared to other class III agents. Tedisamil also has significant anti-ischemic properties and was initially investigated as a potential treatment for angina until its antiarrhythmic effects were discovered. Tedisamil is manufactured by Solvay Pharmaceuticals Inc. under the proposed trade name Pulzium.

<span class="mw-page-title-main">Pilsicainide</span> Chemical compound

Pilsicainide (INN) is an antiarrhythmic agent. It is marketed in Japan as サンリズム (Sunrythm). It was developed by Suntory Holdings Limited and first released in 1991. The JAN applies to the hydrochloride salt, pilsicainide hydrochloride.

<span class="mw-page-title-main">Potassium channel blocker</span> Several medications that disrupt movement of K+ ions

Potassium channel blockers are agents which interfere with conduction through potassium channels.

<span class="mw-page-title-main">Arrhythmia</span> Group of medical conditions characterized by irregular heartbeat

Arrhythmias, also known as cardiac arrhythmias, heart arrhythmias, or dysrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. A resting heart rate that is too fast – above 100 beats per minute in adults – is called tachycardia, and a resting heart rate that is too slow – below 60 beats per minute – is called bradycardia. Some types of arrhythmias have no symptoms. Symptoms, when present, may include palpitations or feeling a pause between heartbeats. In more serious cases, there may be lightheadedness, passing out, shortness of breath, chest pain, or decreased level of consciousness. While most cases of arrhythmia are not serious, some predispose a person to complications such as stroke or heart failure. Others may result in sudden death.

<span class="mw-page-title-main">BRL-32872</span> Chemical compound

BRL-32872 is an experimental drug candidate that provides a novel approach to the treatment of cardiac arrhythmia. Being a derivative of verapamil, it possesses the ability to inhibit Ca+2 membrane channels. Specific modifications in hydrogen bonding activity, nitrogen lone pair availability, and molecular flexibility allow BRL-32872 to inhibit K+ channels as well. As such, BRL-32872 is classified as both a class III (K+ blocking) and class IV (Ca+2 blocking) antiarrhythmic agent.

<span class="mw-page-title-main">Celivarone</span> Experimental drug being tested for use in pharmacological antiarrhythmic therapy

Celivarone is an experimental drug being tested for use in pharmacological antiarrhythmic therapy. Cardiac arrhythmia is any abnormality in the electrical activity of the heart. Arrhythmias range from mild to severe, sometimes causing symptoms like palpitations, dizziness, fainting, and even death. They can manifest as slow (bradycardia) or fast (tachycardia) heart rate, and may have a regular or irregular rhythm.

<span class="mw-page-title-main">Rotigaptide</span> Chemical compound

Rotigaptide (ZP-123) is a drug under clinical investigation for the treatment of cardiac arrhythmias – specifically atrial fibrillation. It is a peptide analog that has been shown to increase gap junction intercellular conductance in cardiac muscle cells. Gap junctions are protein channels that are responsible for conducting electrical impulses between cells in the heart to maintain normal rhythm. Gap junction modulation is a promising and novel mechanism of action for the treatment of cardiovascular disorders. Its peptide sequence is Ac-D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly-NH2.

<span class="mw-page-title-main">AZD1305</span> Chemical compound

AZD1305 is an experimental drug candidate that is under investigation for the management and reversal of cardiac arrhythmias, specifically atrial fibrillation and flutter. In vitro studies have shown that this combined-ion channel blocker inhibits rapidly the activating delayed-rectifier potassium current (IKr), L-type calcium current, and inward sodium current (INa).

<span class="mw-page-title-main">HBI-3000</span> Experimental drug candidate

HBI-3000 is an experimental drug candidate that is currently in phase II of human clinical trials as an antiarrhythmic agent. Clinical investigation will test the safety and efficacy of HBI-3000 as a treatment for both atrial and ventricular arrhythmias.

<span class="mw-page-title-main">XEN-D0101</span> Chemical compound

XEN-D0101 is an experimental drug that was developed to treat atrial fibrillation. Xention, a biopharmaceutical company based in Cambridge, England, created XEN-D0101 along with other ion channel-modulating drugs. XEN-D0101 is a selective antagonist of the voltage-gated potassium channel Kv1.5. Atrial fibrillation is the main focus of Xention’s drug development, as it is the most common cardiac arrhythmia seen in patients.

QT prolongation is a measure of delayed ventricular repolarisation, which means the heart muscle takes longer than normal to recharge between beats. It is an electrical disturbance which can be seen on an electrocardiogram (ECG). Excessive QT prolongation can trigger tachycardias such as torsades de pointes (TdP). QT prolongation is an established side effect of antiarrhythmics, but can also be caused by a wide range of non-cardiac medicines, including antibiotics, antidepressants, antihistamines, opioids, and complementary medicines. On an ECG, the QT interval represents the summation of action potentials in cardiac muscle cells, which can be caused by an increase in inward current through sodium or calcium channels, or a decrease in outward current through potassium channels. By binding to and inhibiting the “rapid” delayed rectifier potassium current protein, certain drugs are able to decrease the outward flow of potassium ions and extend the length of phase 3 myocardial repolarization, resulting in QT prolongation.

References

  1. Roy D, Talajic M, Dorian P, Connolly S, Eisenberg MJ, Green M, Kus T, Lambert J, Dubuc M, Gagné P, Nattel S, Thibault B (March 2000). "Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators". The New England Journal of Medicine. 342 (13): 913–20. doi: 10.1056/NEJM200003303421302 . PMID   10738049.
  2. Singh BN, Singh SN, Reda DJ, Tang XC, Lopez B, Harris CL, Fletcher RD, Sharma SC, Atwood JE, Jacobson AK, Lewis HD, Raisch DW, Ezekowitz MD (May 2005). "Amiodarone versus sotalol for atrial fibrillation". The New England Journal of Medicine. 352 (18): 1861–72. doi: 10.1056/NEJMoa041705 . PMID   15872201.
  3. Kochiadakis GE, Igoumenidis NE, Marketou ME, Kaleboubas MD, Simantirakis EN, Vardas PE (September 2000). "Low dose amiodarone and sotalol in the treatment of recurrent, symptomatic atrial fibrillation: a comparative, placebo controlled study". Heart (British Cardiac Society). 84 (3): 251–7. doi:10.1136/heart.84.3.251. PMC   1760955 . PMID   10956284.
  4. 1 2 3 Morey TE, Seubert CN, Raatikainen MJ, Martynyuk AE, Druzgala P, Milner P, Gonzalez MD, Dennis DM (April 2001). "Structure-activity relationships and electrophysiological effects of short-acting amiodarone homologs in guinea pig isolated heart". The Journal of Pharmacology and Experimental Therapeutics. 297 (1): 260–6. PMID   11259553.
  5. Mason PK, DiMarco JP (2009). "Advances in Arrhythmia and Electrophysiology". Circulation. 2: 588–597. CiteSeerX   10.1.1.991.2904 .
  6. Bosch RF, Nattel S (May 2002). "Cellular electrophysiology of atrial fibrillation". Cardiovascular Research. 54 (2): 259–69. doi:10.1016/s0008-6363(01)00529-6. PMID   12062331.
  7. 1 2 3 4 Arya A, Silberbauer J, Teichman SL, Milner P, Sulke N, Camm AJ (April 2009). "A preliminary assessment of the effects of ATI-2042 in subjects with paroxysmal atrial fibrillation using implanted pacemaker methodology". Europace. 11 (4): 458–64. doi:10.1093/europace/eun384. PMC   2659603 . PMID   19174378.
  8. 1 2 3 Ezekowitz M, Hohnloser SH, Lubinski A, Bandman O, Canafax D, Ellis DJ, Milner PG, Ziola M, Thibault B (May 2009). PASCAL: a randomized doubleblind, placebo-controlled study of budiodarone (ATI-2042) in patients with paroxysmal atrial fibrillation and pacemakers with atrial fibrillation data logging capabilities. Heart Rhythm Society Annual Scientific Sessions. Boston, Mass.