Fibrillation

Last updated
Fibrillation

Fibrillation is the rapid, irregular, and unsynchronized contraction of muscle fibers. An important occurrence is with regard to the heart.

Contents

Cardiology

There are two major classes of cardiac fibrillation: atrial fibrillation and ventricular fibrillation.

Fibrillation may sometimes be used after heart surgery to stop the heart from beating while any minor leaks are stitched up.

Musculoskeletal

Fibrillation also occurs with individual skeletal muscle fibers. [7] This happens when muscle fibers lose contact with their innervating axon producing a spontaneous action potential, "fibrillation potential" that results in the muscle fiber's contraction. These contractions are not visible under the skin and are detectable through needle electromyography (EMG) and ultrasound. [8] Fibrillations can occur in healthy individuals. If the fibrillations have irregular potentials then they don't have pathological significance. [9] In other cases they are a major symptom in acute and severe peripheral nerve disorders, in myopathies in which muscle fibers are split or inflamed, and in lower motor neuron lesions.

They contrast with fasciculations that are visible spontaneous contractions involving small groups of muscle fibers. Fasciculations can be seen in lower motor neuron lesions as well, but they also do not necessarily denote pathology.

Terminology

The word fibrillation ( /ˌfɪbrɪlˈʃən/ ) is related to the word fibril in the sense of muscle fibrils, the proteins that make up each muscle fiber (muscle cell).

Related Research Articles

Ventricular fibrillation Rapid quivering of the ventricles of the heart

Ventricular fibrillation is an abnormal heart rhythm in which the ventricles of the heart quiver instead of pumping normally. It is due to disorganized electrical activity. Ventricular fibrillation results in cardiac arrest with loss of consciousness and no pulse. This is followed by death in the absence of treatment. Ventricular fibrillation is initially found in about 10% of people with cardiac arrest.

Systole

The systole is the part of the cardiac cycle during which some chambers of the heart muscle contract after refilling with blood. The term originates, via New Latin, from Ancient Greek συστολή (sustolē), from συστέλλειν, and is similar to the use of the English term "to squeeze".

Purkinje fibers Purkinje fibers allow the hearts conduction system to create synchronized contractions of its ventricles

The Purkinje fibers are located in the inner ventricular walls of the heart, just beneath the endocardium in a space called the subendocardium. The Purkinje fibers are specialised conducting fibers composed of electrically excitable cells. They are larger than cardiomyocytes with fewer myofibrils and many mitochondria. They conduct cardiac action potentials more quickly and efficiently than any other cells in the heart. Purkinje fibers allow the heart's conduction system to create synchronized contractions of its ventricles, and are essential for maintaining a consistent heart rhythm.

Cardiac muscle Muscular tissue of heart

Cardiac muscle is one of three types of vertebrate muscles, with the other two being skeletal and smooth muscles. It is an involuntary, striated muscle that constitutes the main tissue of the walls of the heart. The myocardium forms a thick middle layer between the outer layer of the heart wall and the inner layer, with blood supplied via the coronary circulation. It is composed of individual heart muscle cells (cardiomyocytes) joined together by intercalated discs, encased by collagen fibers and other substances that form the extracellular matrix.

Palpitations Perceived cardiac abnormality in which ones heartbeat can be felt

Palpitations are perceived abnormalities of the heartbeat characterized by awareness of cardiac muscle contractions in the chest, which is further characterized by the hard, fast and/or irregular beatings of the heart.

Short QT syndrome

Short QT syndrome (SQT) is a very rare genetic disease of the electrical system of the heart, and is associated with an increased risk of abnormal heart rhythms and sudden cardiac death. The syndrome gets its name from a characteristic feature seen on an electrocardiogram (ECG) – a shortening of the QT interval. It is caused by mutations in genes encoding ion channels that shorten the cardiac action potential, and appears to be inherited in an autosomal dominant pattern. The condition is diagnosed using a 12-lead ECG. Short QT syndrome can be treated using an implantable cardioverter-defibrillator or medications including quinidine. Short QT syndrome was first described in 2000, and the first genetic mutation associated with the condition was identified in 2004.

Electrical conduction system of the heart Transmits signals generated usually by the sinoatrial node to cause contraction of the heart muscle

The electrical conduction system of the heart transmits signals generated usually by the sinoatrial node to cause contraction of the heart muscle. The pacemaking signal generated in the sinoatrial node travels through the right atrium to the atrioventricular node, along the Bundle of His and through bundle branches to cause contraction of the heart muscle. This signal stimulates contraction first of the right and left atrium, and then the right and left ventricles. This process allows blood to be pumped throughout the body.

Sotalol

Sotalol, sold under the brand name Betapace among others, is a medication used to treat and prevent abnormal heart rhythms. It is only recommended in those with significant abnormal heart rhythms due to potentially serious side effects. Evidence does not support a decreased risk of death with long term use. It is taken by mouth or injection into a vein.

Atrium (heart)

The atrium is the upper chamber through which blood enters the ventricles of the heart. There are two atria in the human heart – the left atrium receives blood from the pulmonary (lung) circulation, and the right atrium receives blood from the venae cavae. The atria receive blood while relaxed (diastole), then contract (systole) to move blood to the ventricles. All animals with a closed circulatory system have at least one atrium. Humans have two atria.

Cardiac cycle

The cardiac cycle is the performance of the human heart from the ending of one heartbeat to the beginning of the next. It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole, following a period of robust contraction and pumping of blood, dubbed systole. After emptying, the heart immediately relaxes and expands to receive another influx of blood returning from the lungs and other systems of the body, before again contracting to pump blood to the lungs and those systems. A normally performing heart must be fully expanded before it can efficiently pump again. Assuming a healthy heart and a typical rate of 70 to 75 beats per minute, each cardiac cycle, or heartbeat, takes about 0.8 seconds to complete the cycle. There are two atrial and two ventricle chambers of the heart; they are paired as the left heart and the right heart—that is, the left atrium with the left ventricle, the right atrium with the right ventricle—and they work in concert to repeat the cardiac cycle continuously,. At the start of the cycle, during ventricular diastole–early, the heart relaxes and expands while receiving blood into both ventricles through both atria; then, near the end of ventricular diastole–late, the two atria begin to contract, and each atrium pumps blood into the ventricle below it. During ventricular systole the ventricles are contracting and vigorously pulsing two separated blood supplies from the heart—one to the lungs and one to all other body organs and systems—while the two atria are relaxed. This precise coordination ensures that blood is efficiently collected and circulated throughout the body.

Premature atrial contractions (PACs), also known as atrial premature complexes (APC) or atrial premature beats (APB), are a common cardiac dysrhythmia characterized by premature heartbeats originating in the atria. While the sinoatrial node typically regulates the heartbeat during normal sinus rhythm, PACs occur when another region of the atria depolarizes before the sinoatrial node and thus triggers a premature heartbeat. The exact cause of PACs is unclear; while several predisposing conditions exist, PACs commonly occur in healthy young and elderly people. Elderly people that get PACs usually don't need any further attention besides follow ups due to unclear evidence. PACs are often completely asymptomatic and may be noted only with Holter monitoring, but occasionally they can be perceived as a skipped beat or a jolt in the chest. In most cases, no treatment other than reassurance is needed for PACs, although medications such as beta blockers can reduce the frequency of symptomatic PACs.

The apex beat, also called the apical impulse, is the pulse felt at the point of maximum impulse (PMI), which is the point on the precordium farthest outwards (laterally) and downwards (inferiorly) from the sternum at which the cardiac impulse can be felt. The cardiac impulse is the vibration resulting from the heart rotating, moving forward, and striking against the chest wall during systole. The PMI is not the apex of the heart but is on the precordium not far from it. Another theory for the occurrence of the PMI is the early systolic contraction of the longitudinal fibers of the left ventricle located on the endocardial surface of this chamber. This period of the cardiac cycle is called isovolumic contraction. Because the contraction starts near the base of the left ventricle and spreads toward the apex most of the longitudinal fibers of the left ventricle have shortened before the apex. The rapidly increasing pressure developed by the shortening of these fibers causes the aortic valve to open and the apex to move outward causing the PMI. Anatomical dissection of the musculature of the apex reveals that muscle fibers are no longer longitudinal oriented but form a spiral mass of muscular tissues which may also have an effect on the ability of the apex to contract longitudinally. After the longitudinal fibers contract, the ejection of blood out of the Left Ventricle is accomplished by the wringing action of the circumferential muscle fibers of the left ventricle that are in the mid-portion of the ventricle and contract after the longitudinal fibers. During the longitudinal fiber contraction, the volume of the left ventricle has not changed keeping the apex in intimate contact with the chest wall allowing the ability to feel the apex move outward before the heart empties greater than 55% of its volume and the apex falling away from the chest wall. (3)

The Dor procedure is a medical technique used as part of heart surgery and originally introduced by the French cardiac surgeon Vincent Dor (b.1932). It is also known as endoventricular circular patch plasty (EVCPP).

Tedisamil

Tedisamil (3,7-dicyclopropylmethyl-9,9-tetramethylene-3,7-diazabicyclo-3,3,1-nonane) is an experimental class III antiarrhythmic agent currently being investigated for the treatment of atrial fibrillation. Tedisamil blocks multiple types of potassium channels in the heart resulting in slowed heart rate. While the effects of tedisamil have been demonstrated in both atrial and ventricular muscle, repolarization is prolonged more efficiently in the atria. Tedisamil is administered intravenously and has a half-life of approximately 8 –13 hours in circulation. Tedisamil is being developed as an alternative to other antiarrhythmics as incidence of additional arrhythmic events is lower compared to other class III agents. Tedisamil also has significant anti-ischemic properties and was initially investigated as a potential treatment for angina until its antiarrhythmic effects were discovered. Tedisamil is manufactured by Solvay Pharmaceuticals Inc. under the proposed trade name Pulzium.

Pilsicainide

Pilsicainide (INN) is an antiarrhythmic agent. It is marketed in Japan as サンリズム (Sunrythm). It was developed by Suntory Holdings Limited and first released in 1991. The JAN applies to the hydrochloride salt, pilsicainide hydrochloride.

The E/A ratio is a marker of the function of the left ventricle of the heart. It represents the ratio of peak velocity blood flow from left ventricular relaxation in early diastole to peak velocity flow in late diastole caused by atrial contraction. It is calculated using Doppler echocardiography, an ultrasound-based cardiac imaging modality. Abnormalities in the E/A ratio suggest that the left ventricle, which pumps blood into the circulation, cannot fill with blood properly in the period between contractions. This phenomenon is referred to as diastolic dysfunction and can eventually lead to the symptoms of heart failure.

Arrhythmia Group of conditions in which the heartbeat is irregular, too fast, or too slow

Arrhythmia, also known as cardiac arrhythmia or heart arrhythmia, is a group of conditions in which the heartbeat is irregular, too fast, or too slow. The heart rate that is too fast – above 100 beats per minute in adults – is called tachycardia, and a heart rate that is too slow – below 60 beats per minute – is called bradycardia. Some types of arrhythmias have no symptoms. Symptoms, when present, may include palpitations or feeling a pause between heartbeats. In more serious cases, there may be lightheadedness, passing out, shortness of breath or chest pain. While most types of arrhythmia are not serious, some predispose a person to complications such as stroke or heart failure. Others may result in sudden death.

Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.

Celivarone Experimental drug being tested for use in pharmacological antiarrhythmic therapy

Celivarone is an experimental drug being tested for use in pharmacological antiarrhythmic therapy. Cardiac arrhythmia is any abnormality in the electrical activity of the heart. Arrhythmias range from mild to severe, sometimes causing symptoms like palpitations, dizziness, fainting, and even death. They can manifest as slow (bradycardia) or fast (tachycardia) heart rate, and may have a regular or irregular rhythm.

XEN-D0101

XEN-D0101 is an experimental drug that was developed to treat atrial fibrillation. Xention, a biopharmaceutical company based in Cambridge, United Kingdom, created XEN-D0101 along with other ion channel-modulating drugs. XEN-D0101 is a selective antagonist of the voltage-gated potassium channel Kv1.5. Atrial fibrillation is the main focus of Xention’s drug development, as it is the most common cardiac arrhythmia seen in patients.

References

  1. Reddy, Vivek; Taha, Wael; Kundumadam, Shanker; Khan, Mazhar (2017-07-05). "Atrial fibrillation and hyperthyroidism: A literature review". Indian Heart Journal. Elsevier BV. 69 (4): 545–550. doi:10.1016/j.ihj.2017.07.004. ISSN   0019-4832. PMC   5560908 . PMID   28822529.
  2. Dalen, James E.; Alpert, Joseph S. (2017). "Silent Atrial Fibrillation and Cryptogenic Strokes". The American Journal of Medicine. Elsevier BV. 130 (3): 264–267. doi: 10.1016/j.amjmed.2016.09.027 . ISSN   0002-9343. PMID   27756556.
  3. Visser, Marloes; van der Heijden, Jeroen F.; Doevendans, Pieter A.; Loh, Peter; Wilde, Arthur A.; Hassink, Rutger J. (2016). "Idiopathic Ventricular Fibrillation". Circulation: Arrhythmia and Electrophysiology. Ovid Technologies (Wolters Kluwer Health). 9 (5). doi:10.1161/circep.115.003817. ISSN   1941-3149. PMID   27103090.
  4. Krummen, David E; Ho, Gordon; Villongco, Christopher T; Hayase, Justin; Schricker, Amir A (2016). "Ventricular fibrillation: triggers, mechanisms and therapies". Future Cardiology. Future Medicine Ltd. 12 (3): 373–390. doi:10.2217/fca-2016-0001. ISSN   1479-6678. PMID   27120223.
  5. Luo, Qingzhi; Jin, Qi; Zhang, Ning; Huang, Shangwei; Han, Yanxin; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun (2017-11-28). "Antifibrillatory effects of renal denervation on ventricular fibrillation in a canine model of pacing-induced heart failure". Experimental Physiology. Wiley. 103 (1): 19–30. doi: 10.1113/ep086472 . ISSN   0958-0670. PMID   29094471.
  6. Ludhwani, Dipesh; Jagtap, Mandar (2018-12-19). "Rhythm, Ventricular Fibrillation". NCBI Bookshelf. PMID   30725805 . Retrieved 2019-03-29.
  7. " fibrillation " at Dorland's Medical Dictionary
  8. Pillen S, Nienhuis M, van Dijk JP, Arts IM, van Alfen N, Zwarts MJ (2009). "Muscles alive: ultrasound detects fibrillations". Clin Neurophysiol. 120 (5): 932–6. doi:10.1016/j.clinph.2009.01.016. PMID   19356976.
  9. Stöhr M (1977). "Benign fibrillation potentials in normal muscle and their correlation with endplate and denervation potentials". J. Neurol. Neurosurg. Psychiatry. 40 (8): 765–8. doi:10.1136/jnnp.40.8.765. PMC   492832 . PMID   925696.