Electromyography

Last updated
Electromyography
EMG - SIMI.jpg
EMG from gait termination, bottom left is the raw EMG, right is the rectified pattern
ICD-9-CM 93.08
MeSH D004576

Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. [1] [2] EMG is performed using an instrument called an electromyograph to produce a record called an electromyogram. An electromyograph detects the electric potential generated by muscle cells [3] when these cells are electrically or neurologically activated. The signals can be analyzed to detect abnormalities, activation level, or recruitment order, or to analyze the biomechanics of human or animal movement. Needle EMG is an electrodiagnostic medicine technique commonly used by neurologists. Surface EMG is a non-medical procedure used to assess muscle activation by several professionals, including physiotherapists, kinesiologists and biomedical engineers. In computer science, EMG is also used as middleware in gesture recognition towards allowing the input of physical action to a computer as a form of human-computer interaction. [4]

Contents

Clinical uses

EMG testing has a variety of clinical and biomedical applications. Needle EMG is used as a diagnostics tool for identifying neuromuscular diseases, [5] or as a research tool for studying kinesiology, and disorders of motor control. EMG signals are sometimes used to guide botulinum toxin or phenol injections into muscles. Surface EMG is used for functional diagnosis and during instrumental motion analysis. EMG signals are also used as a control signal for prosthetic devices such as prosthetic hands, arms and lower limbs.[ citation needed ]

An acceleromyograph may be used for neuromuscular monitoring in general anesthesia with neuromuscular-blocking drugs, in order to avoid postoperative residual curarization (PORC). [6] [7] [8] [9]

Except in the case of some purely primary myopathic conditions EMG is usually performed with another electrodiagnostic medicine test that measures the conducting function of nerves. This is called nerve conduction study (NCS). Needle EMG and NCSs are typically indicated when there is pain in the limbs, weakness from spinal nerve compression, or concern about some other neurologic injury or disorder. [10] Spinal nerve injury does not cause neck, mid back pain or low back pain, and for this reason, evidence has not shown EMG or NCS to be helpful in diagnosing causes of axial lumbar pain, thoracic pain, or cervical spine pain. [10] Needle EMG may aid with the diagnosis of nerve compression or injury (such as carpal tunnel syndrome), nerve root injury (such as sciatica), and with other problems of the muscles or nerves. Less common medical conditions include amyotrophic lateral sclerosis, myasthenia gravis, and muscular dystrophy.[ citation needed ]

Technique

Skin preparation and risks

The first step before insertion of the needle electrode is skin preparation. This typically involves simply cleaning the skin with an alcohol pad.[ citation needed ]

The actual placement of the needle electrode can be difficult and depends on a number of factors, such as specific muscle selection and the size of that muscle. Proper needle EMG placement is very important for accurate representation of the muscle of interest, although EMG is more effective on superficial muscles as it is unable to bypass the action potentials of superficial muscles and detect deeper muscles. Also, the more body fat an individual has, the weaker the EMG signal. When placing the EMG sensor, the ideal location is at the belly of the muscle: the longitudinal midline. The belly of the muscle can also be thought of as in-between the motor point (middle) of the muscle and the tendonus insertion point.[ citation needed ]

Cardiac pacemakers and implanted cardiac defibrillators (ICDs) are used increasingly in clinical practice, and no evidence exists indicating that performing routine electrodiagnostic studies on patients with these devices pose a safety hazard. However, there are theoretical concerns that electrical impulses of nerve conduction studies (NCS) could be erroneously sensed by devices and result in unintended inhibition or triggering of output or reprogramming of the device. In general, the closer the stimulation site is to the pacemaker and pacing leads, the greater the chance for inducing a voltage of sufficient amplitude to inhibit the pacemaker. Despite such concerns, no immediate or delayed adverse effects have been reported with routine NCS.[ citation needed ]

No known contraindications exist for performing needle EMG or NCS on pregnant patients. Additionally, no complications from these procedures have been reported in the literature. Evoked potential testing, likewise, has not been reported to cause any problems when it is performed during pregnancy. [11]

Patients with lymphedema or patients at risk for lymphedema are routinely cautioned to avoid percutaneous procedures in the affected extremity, namely venipuncture, to prevent development or worsening of lymphedema or cellulitis. Despite the potential risk, the evidence for such complications subsequent to venipuncture is limited. No published reports exist of cellulitis, infection, or other complications related to EMG performed in the setting of lymphedema or prior lymph node dissection. However, given the unknown risk of cellulitis in patients with lymphedema, reasonable caution should be exercised in performing needle examinations in lymphedematous regions to avoid complications. In patients with gross edema and taut skin, skin puncture by needle electrodes may result in chronic weeping of serous fluid. The potential bacterial media of such serous fluid and the violation of skin integrity may increase the risk of cellulitis. Before proceeding, the physician should weigh the potential risks of performing the study with the need to obtain the information gained. [11]

Surface and intramuscular EMG recording electrodes

There are two kinds of EMG: surface EMG and intramuscular EMG. Surface EMG assesses muscle function by recording muscle activity from the surface above the muscle on the skin. Surface EMG can be recorded by a pair of electrodes or by a more complex array of multiple electrodes. More than one electrode is needed because EMG recordings display the potential difference (voltage difference) between two separate electrodes. Limitations of this approach are the fact that surface electrode recordings are restricted to superficial muscles, are influenced by the depth of the subcutaneous tissue at the site of the recording which can be highly variable depending on the weight of a patient, and cannot reliably discriminate between the discharges of adjacent muscles. Specific electrode placements and functional tests have been developed to minimize this risk, thus providing reliable examinations.[ citation needed ]

Intramuscular EMG can be performed using a variety of different types of recording electrodes. The simplest approach is a monopolar needle electrode. This can be a fine wire inserted into a muscle with a surface electrode as a reference; or two fine wires inserted into muscle referenced to each other. Most commonly fine wire recordings are for research or kinesiology studies. Diagnostic monopolar EMG electrodes are typically insulated and stiff enough to penetrate skin, with only the tip exposed using a surface electrode for reference. Needles for injecting therapeutic botulinum toxin or phenol are typically monopolar electrodes that use a surface reference, in this case, however, the metal shaft of a hypodermic needle, insulated so that only the tip is exposed, is used both to record signals and to inject. Slightly more complex in design is the concentric needle electrode. These needles have a fine wire, embedded in a layer of insulation that fills the barrel of a hypodermic needle, that has an exposed shaft, and the shaft serves as the reference electrode. The exposed tip of the fine wire serves as the active electrode. As a result of this configuration, signals tend to be smaller when recorded from a concentric electrode than when recorded from a monopolar electrode and they are more resistant to electrical artifacts from tissue and measurements tend to be somewhat more reliable. However, because the shaft is exposed throughout its length, superficial muscle activity can contaminate the recording of deeper muscles. Single fiber EMG needle electrodes are designed to have very tiny recording areas, and allow for the discharges of individual muscle fibers to be discriminated.[ citation needed ]

To perform intramuscular EMG, typically either a monopolar or concentric needle electrode is inserted through the skin into the muscle tissue. The needle is then moved to multiple spots within a relaxed muscle to evaluate both insertional activity and resting activity in the muscle. Normal muscles exhibit a brief burst of muscle fiber activation when stimulated by needle movement, but this rarely lasts more than 100ms. The two most common pathologic types of resting activity in muscle are fasciculation and fibrillation potentials. A fasciculation potential is an involuntary activation of a motor unit within the muscle, sometimes visible with the naked eye as a muscle twitch or by surface electrodes. Fibrillations, however, are detected only by needle EMG, and represent the isolated activation of individual muscle fibers, usually as the result of nerve or muscle disease. Often, fibrillations are triggered by needle movement (insertional activity) and persist for several seconds or more after the movement ceases.[ citation needed ]

After assessing resting and insertional activity, the electromyographer assess the activity of muscle during voluntary contraction. The shape, size, and frequency of the resulting electrical signals are judged. Then the electrode is retracted a few millimetres, and again the activity is analyzed. This is repeated, sometimes until data on 10–20 motor units have been collected in order to draw conclusions about motor unit function. Each electrode track gives only a very local picture of the activity of the whole muscle. Because skeletal muscles differ in the inner structure, the electrode has to be placed at various locations to obtain an accurate study. For the interpretation of EMG study is important to evaluate parameters of tested muscle motor units. This process may well be partially automated using appropriate software. [12]

Single fiber electromyography assesses the delay between the contractions of individual muscle fibers within a motor unit and is a sensitive test for dysfunction of the neuromuscular junction caused by drugs, poisons, or diseases such as myasthenia gravis. The technique is complicated and typically performed only by individuals with special advanced training.

Surface EMG is used in a number of settings; for example, in the physiotherapy clinic, muscle activation is monitored using surface EMG and patients have an auditory or visual stimulus to help them know when they are activating the muscle (biofeedback). A review of the literature on surface EMG published in 2008, concluded that surface EMG may be useful to detect the presence of neuromuscular disease (level C rating, class III data), but there are insufficient data to support its utility for distinguishing between neuropathic and myopathic conditions or for the diagnosis of specific neuromuscular diseases. EMGs may be useful for additional study of fatigue associated with post-poliomyelitis syndrome and electromechanical function in myotonic dystrophy (level C rating, class III data). [11] Recently, with the rise of technology in sports, sEMG has become an area of focus for coaches to reduce the incidence of soft tissue injury and improve player performance.

Certain US states limit the performance of needle EMG by nonphysicians. New Jersey declared that it cannot be delegated to a physician's assistant. [13] [14] Michigan has passed legislation saying needle EMG is the practice of medicine. [15] Special training in diagnosing medical diseases with EMG is required only in residency and fellowship programs in neurology, clinical neurophysiology, neuromuscular medicine, and physical medicine and rehabilitation. There are certain subspecialists in otolaryngology who have had selective training in performing EMG of the laryngeal muscles, and subspecialists in urology, obstetrics and gynecology who have had selective training in performing EMG of muscles controlling bowel and bladder function.[ citation needed ]

Maximal voluntary contraction

One basic function of EMG is to see how well a muscle can be activated. The most common way that can be determined is by performing a maximal voluntary contraction (MVC) of the muscle that is being tested. [16] Each muscle group type has different characteristics, and MVC positions are varied for different muscle group types. Therefore, the researcher should be very careful while choosing the MVC position type to elicit the greater muscle activity level from the subjects. [17]

The types of MVC positions can vary among muscle types, contingent upon the specific muscle group being considered, including trunk muscles, lower limb muscles, and others. [18] [19]

Muscle force, which is measured mechanically, typically correlates highly with measures of EMG activation of muscle. Most commonly this is assessed with surface electrodes, but it should be recognized that these typically record only from muscle fibers in close proximity to the surface.

Several analytical methods for determining muscle activation are commonly used depending on the application. The use of mean EMG activation or the peak contraction value is a debated topic. Most studies commonly use the maximal voluntary contraction as a means of analyzing peak force and force generated by target muscles. According to the article "Peak and average rectified EMG measures: Which method of data reduction should be used for assessing core training exercises?", [20] it was concluded that the "average rectified EMG data (ARV) is significantly less variable when measuring the muscle activity of the core musculature compared to the peak EMG variable." Therefore, these researchers would suggest that "ARV EMG data should be recorded alongside the peak EMG measure when assessing core exercises." Providing the reader with both sets of data would result in enhanced validity of the study and potentially eradicate the contradictions within the research. [21] [22]

Other measurements

EMG can also be used for indicating the amount of fatigue in a muscle. The following changes in the EMG signal can signify muscle fatigue: an increase in the mean absolute value of the signal, increase in the amplitude and duration of the muscle action potential and an overall shift to lower frequencies. Monitoring the changes of different frequency changes the most common way of using EMG to determine levels of fatigue. The lower conduction velocities enable the slower motor neurons to remain active. [23]

A motor unit is defined as one motor neuron and all of the muscle fibers it innervates. When a motor unit fires, the impulse (called an action potential) is carried down the motor neuron to the muscle. The area where the nerve contacts the muscle is called the neuromuscular junction, or the motor end plate. After the action potential is transmitted across the neuromuscular junction, an action potential is elicited in all of the innervated muscle fibers of that particular motor unit. The sum of all this electrical activity is known as a motor unit action potential (MUAP). This electrophysiologic activity from multiple motor units is the signal typically evaluated during an EMG. The composition of the motor unit, the number of muscle fibres per motor unit, the metabolic type of muscle fibres and many other factors affect the shape of the motor unit potentials in the myogram.[ citation needed ]

Nerve conduction testing is also often done at the same time as an EMG to diagnose neurological diseases. [24]

Some patients can find the procedure somewhat painful, whereas others experience only a small amount of discomfort when the needle is inserted. The muscle or muscles being tested may be slightly sore for a day or two after the procedure. [25]

EMG signal decomposition

EMG signals are essentially made up of superimposed motor unit action potentials (MUAPs) from several motor units. For a thorough analysis, the measured EMG signals can be decomposed into their constituent MUAPs. MUAPs from different motor units tend to have different characteristic shapes, while MUAPs recorded by the same electrode from the same motor unit are typically similar. Notably MUAP size and shape depend on where the electrode is located with respect to the fibers and so can appear to be different if the electrode moves position. EMG decomposition is non-trivial, although many methods have been proposed. [26]

EMG signal processing

Rectification is the translation of the raw EMG signal to a signal with a single polarity, usually positive. The purpose of rectifying the signal is to ensure the signal does not average to zero, due to the raw EMG signal having positive and negative components. Two types of rectification are used: full-wave and half-wave rectification. [27] Full-wave rectification adds the EMG signal below the baseline to the signal above the baseline to make a conditioned signal that is all positive. If the baseline is zero, this is equivalent to taking the absolute value of the signal. [28] [29] This is the preferred method of rectification because it conserves all of the signal energy for analysis. Half-wave rectification discards the portion of the EMG signal that is below the baseline. In doing so, the average of the data is no longer zero therefore it can be used in statistical analyses.

Limitations

Needle EMG used in clinical settings has practical applications such as helping to discover disease. Needle EMG has limitations, however, in that it does involve voluntary activation of muscle, and as such is less informative in patients unwilling or unable to cooperate, children and infants, and in individuals with paralysis. Surface EMG can have limited applications due to inherent problems associated with surface EMG. Adipose tissue (fat) can affect EMG recordings. Studies show that as adipose tissue increased the active muscle directly below the surface decreased. As adipose tissue increased, the amplitude of the surface EMG signal directly above the center of the active muscle decreased. EMG signal recordings are typically more accurate with individuals who have lower body fat, and more compliant skin, such as young people when compared to old. Muscle cross talk occurs when the EMG signal from one muscle interferes with that of another limiting reliability of the signal of the muscle being tested. Surface EMG is limited due to lack of deep muscles reliability. Deep muscles require intramuscular wires that are intrusive and painful in order to achieve an EMG signal. Surface EMG can measure only superficial muscles and even then it is hard to narrow down the signal to a single muscle. [30]

Electrical characteristics

The electrical source is the muscle membrane potential of about –90 mV. [31] Measured EMG potentials range between less than 50 μV and up to 30 mV, depending on the muscle under observation.[ citation needed ]

Typical repetition rate of muscle motor unit firing is about 7–20 Hz, depending on the size of the muscle (eye muscles versus seat (gluteal) muscles), previous axonal damage and other factors. Damage to motor units can be expected at ranges between 450 and 780 mV. [32]

Procedure outcomes

Normal results

Muscle tissue at rest is normally electrically inactive. After the electrical activity caused by the irritation of needle insertion subsides, the electromyograph should detect no abnormal spontaneous activity (i.e., a muscle at rest should be electrically silent, with the exception of the area of the neuromuscular junction, which is, under normal circumstances, very spontaneously active). When the muscle is voluntarily contracted, action potentials begin to appear. As the strength of the muscle contraction is increased, more and more muscle fibers produce action potentials. When the muscle is fully contracted, there should appear a disorderly group of action potentials of varying rates and amplitudes (a complete recruitment); this can be described as an interference pattern. [33] [34]

Abnormal results

EMG findings vary with the type of disorder, the duration of the problem, the age of the patient, the degree to which the patient can be cooperative, the type of needle electrode used to study the patient, and sampling error in terms of the number of areas studied within a single muscle and the number of muscles studied overall. Interpreting EMG findings is usually best done by an individual informed by a focused history and physical examination of the patient, and in conjunction with the results of other relevant diagnostic studies performed including most importantly, nerve conduction studies, but also, where appropriate, imaging studies such as MRI and ultrasound, muscle and nerve biopsy, muscle enzymes, and serologic studies.[ citation needed ]

Abnormal results may be caused by the following medical conditions (please note this is not an exhaustive list of conditions that can result in abnormal EMG studies):[ citation needed ]

History

The first documented experiments dealing with EMG started with Francesco Redi's works in 1666. Redi discovered a highly specialized muscle of the electric ray fish (Electric Eel) generated electricity. By 1773, Walsh had been able to demonstrate that the eel fish's muscle tissue could generate a spark of electricity. In 1792, a publication entitled De Viribus Electricitatis in Motu Musculari Commentarius appeared, written by Luigi Galvani, in which the author demonstrated that electricity could initiate muscle contraction. Six decades later, in 1849, Emil du Bois-Reymond discovered that it was also possible to record electrical activity during a voluntary muscle contraction. [35] The first actual recording of this activity was made by Marey in 1890, who also introduced the term electromyography. [36] In 1922, Gasser and Erlanger used an oscilloscope to show the electrical signals from muscles. Because of the stochastic nature of the myoelectric signal, only rough information could be obtained from its observation. The capability of detecting electromyographic signals improved steadily from the 1930s through the 1950s, and researchers began to use improved electrodes more widely for the study of muscles. The AANEM was formed in 1953 as one of several currently active medical societies with a special interest in advancing the science and clinical use of the technique. Clinical use of surface EMG (sEMG) for the treatment of more specific disorders began in the 1960s. Hardyck and his researchers were the first (1966) practitioners to use sEMG. In the early 1980s, Cram and Steger introduced a clinical method for scanning a variety of muscles using an EMG sensing device. [37]

7/12/1954 Mayo Clinic Medical Sciences EMG Lab. Ervin L Schmidt in the chair, Mildred Windesheim's arm holding the electrode. Erv EMG.jpg
7/12/1954 Mayo Clinic Medical Sciences EMG Lab. Ervin L Schmidt in the chair, Mildred Windesheim's arm holding the electrode.

Research began at the Mayo Clinic in Rochester, Minnesota under the guidance of Edward H. Lambert, MD, PhD (1915–2003) in the early 1950s. Lambert, known as the "Father of EMG", [38] with the assistance of his Research Technician, Ervin L Schmidt, a self taught electrical engineer, developed a machine that could be moved from the EMG Lab, and was relatively easy to use. As oscilloscopes had no "store" or "print" features at the time, a Polaroid camera was affixed to the front on a hinge. It was synchronized to photo the scan. Fellows studying at Mayo soon learned that this was a tool they wanted, too. As Mayo has no interest in marketing their inventions, Schmidt went on to continue to develop them in his basement for decades, selling them under the name ErMel Inc.

It was not until the middle of the 1980s that integration techniques in electrodes had sufficiently advanced to allow batch production of the required small and lightweight instrumentation and amplifiers. At present, a number of suitable amplifiers are commercially available. In the early 1980s, cables that produced signals in the desired microvolt range became available. Recent research has resulted in a better understanding of the properties of surface EMG recording. Surface electromyography is increasingly used for recording from superficial muscles in clinical or kinesiological protocols, where intramuscular electrodes are used for investigating deep muscles or localized muscle activity.

There are many applications for the use of EMG. EMG is used clinically for the diagnosis of neurological and neuromuscular problems. It is used diagnostically by gait laboratories and by clinicians trained in the use of biofeedback or ergonomic assessment. EMG is also used in many types of research laboratories, including those involved in biomechanics, motor control, neuromuscular physiology, movement disorders, postural control, and physical therapy.

Research

EMG can be used to sense isometric muscular activity where no movement is produced. This enables definition of a class of subtle motionless gestures to control interfaces without being noticed and without disrupting the surrounding environment. These signals can be used to control a prosthesis or as a control signal for an electronic device such as a mobile phone or PDA [ citation needed ].

EMG signals have been targeted as control for flight systems. The Human Senses Group at the NASA Ames Research Center at Moffett Field, CA seeks to advance man-machine interfaces by directly connecting a person to a computer. In this project, an EMG signal is used to substitute for mechanical joysticks and keyboards. EMG has also been used in research towards a "wearable cockpit", which employs EMG-based gestures to manipulate switches and control sticks necessary for flight in conjunction with a goggle-based display.

Unvoiced or silent speech recognition recognizes speech by observing the EMG activity of muscles associated with speech. It is targeted for use in noisy environments, and may be helpful for people without vocal cords, with aphasia, with dysphonia, and more. [39]

EMG has also been used as a control signal for computers and other devices. An interface device based on an EMG Switch can be used to control moving objects, such as mobile robots or an electric wheelchair. [40] This may be helpful for individuals that cannot operate a joystick-controlled wheelchair. Surface EMG recordings may also be a suitable control signal for some interactive video games. [41]

A joint project involving Microsoft, the University of Washington in Seattle, and the University of Toronto in Canada has explored using muscle signals from hand gestures as an interface device. [42] A patent based on this research was submitted on June 26, 2008. [43]

In 2016 a startup called Emteq Labs launched a virtual reality headset with embedded EMG sensors for measuring facial expressions. [44] In September 2019 Facebook, later renamed Meta Platforms, bought a startup called CTRL-labs that was working on EMG. [45] In 2024, Meta unveiled augmented reality glasses that were paired with a wristband that reads a user's hand gestures using electromyography. [46]

See also

Related Research Articles

In neuroscience, an F wave is one of several motor responses which may follow the direct motor response (M) evoked by electrical stimulation of peripheral motor or mixed nerves. F-waves are the second of two late voltage changes observed after stimulation is applied to the skin surface above the distal region of a nerve, in addition to the H-reflex which is a muscle reaction in response to electrical stimulation of innervating sensory fibers. Traversal of F-waves along the entire length of peripheral nerves between the spinal cord and muscle, allows for assessment of motor nerve conduction between distal stimulation sites in the arm and leg, and related motoneurons (MN's) in the cervical and lumbosacral cord. F-waves are able to assess both afferent and efferent loops of the alpha motor neuron in its entirety. As such, various properties of F-wave motor nerve conduction are analyzed in nerve conduction studies (NCS), and often used to assess polyneuropathies, resulting from states of neuronal demyelination and loss of peripheral axonal integrity.

<span class="mw-page-title-main">Lambert–Eaton myasthenic syndrome</span> Autoimmune disorder causing muscular weakness

Lambert–Eaton myasthenic syndrome (LEMS) is a rare autoimmune disorder characterized by muscle weakness of the limbs. It is also known as myasthenic syndrome, Eaton–Lambert syndrome, and when related to cancer, carcinomatous myopathy.

Clinical neurophysiology is a medical specialty that studies the central and peripheral nervous systems through the recording of bioelectrical activity, whether spontaneous or stimulated. It encompasses both research regarding the pathophysiology along with clinical methods used to diagnose diseases involving both central and peripheral nervous systems. Examinations in the clinical neurophysiology field are not limited to tests conducted in a laboratory. It is thought of as an extension of a neurologic consultation. Tests that are conducted are concerned with measuring the electrical functions of the brain, spinal cord, and nerves in the limbs and muscles. It can give the precise definition of site, the type and degree of the lesion, along with revealing the abnormalities that are in question. Due to these abilities, clinical neurophysiology is used to mainly help diagnose diseases rather than treat them.

In biology, a motor unit is made up of a motor neuron and all of the skeletal muscle fibers innervated by the neuron's axon terminals, including the neuromuscular junctions between the neuron and the fibres. Groups of motor units often work together as a motor pool to coordinate the contractions of a single muscle. The concept was proposed by Charles Scott Sherrington.

<span class="mw-page-title-main">Functional electrical stimulation</span> Technique that uses low-energy electrical pulses

Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation (NMES).

<span class="mw-page-title-main">End-plate potential</span> Voltages associated with muscle fibre

End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynaptic terminals of muscle fibers have a large, saucer-like appearance. When an action potential reaches the axon terminal of a motor neuron, vesicles carrying neurotransmitters are exocytosed and the contents are released into the neuromuscular junction. These neurotransmitters bind to receptors on the postsynaptic membrane and lead to its depolarization. In the absence of an action potential, acetylcholine vesicles spontaneously leak into the neuromuscular junction and cause very small depolarizations in the postsynaptic membrane. This small response (~0.4mV) is called a miniature end plate potential (MEPP) and is generated by one acetylcholine-containing vesicle. It represents the smallest possible depolarization which can be induced in a muscle.

Electroneuronography or electroneurography (ENoG) is a neurological non-invasive test used to study the facial nerve in cases of muscle weakness in one side of the face. The technique of electroneuronography was first used by Esslen and Fisch in 1979 to describe a technique that examines the integrity and conductivity of peripheral nerves. In modern use, ENoG is used to describe study of the facial nerve, while the term nerve conduction study is employed for other nerves.

<span class="mw-page-title-main">Fasciculation</span> Spontaneous, involuntary muscle twitch

A fasciculation, or muscle twitch, is a spontaneous, involuntary muscle contraction and relaxation, involving fine muscle fibers. They are common, with as many as 70% of people experiencing them. They can be benign, or associated with more serious conditions. When no cause or pathology is identified, they are diagnosed as benign fasciculation syndrome.

<span class="mw-page-title-main">Nerve conduction study</span> Diagnostic test for nerve function

A nerve conduction study (NCS) is a medical diagnostic test commonly used to evaluate the function, especially the ability of electrical conduction, of the motor and sensory nerves of the human body. These tests may be performed by medical specialists such as clinical neurophysiologists, physical therapists, physiatrists, and neurologists who subspecialize in electrodiagnostic medicine. In the United States, neurologists and physiatrists receive training in electrodiagnostic medicine as part of residency training and in some cases acquire additional expertise during a fellowship in clinical neurophysiology, electrodiagnostic medicine, or neuromuscular medicine. Outside the US, clinical neurophysiologists learn needle EMG and NCS testing.

Intraoperative neurophysiological monitoring (IONM) or intraoperative neuromonitoring is the use of electrophysiological methods such as electroencephalography (EEG), electromyography (EMG), and evoked potentials to monitor the functional integrity of certain neural structures during surgery. The purpose of IONM is to reduce the risk to the patient of iatrogenic damage to the nervous system, and/or to provide functional guidance to the surgeon and anesthesiologist.

<span class="mw-page-title-main">Nerve conduction velocity</span> Speed at which an electrochemical impulse propagates down a neural pathway

In neuroscience, nerve conduction velocity (CV) is the speed at which an electrochemical impulse propagates down a neural pathway. Conduction velocities are affected by a wide array of factors, which include age, sex, and various medical conditions. Studies allow for better diagnoses of various neuropathies, especially demyelinating diseases as these conditions result in reduced or non-existent conduction velocities. CV is an important aspect of nerve conduction studies.

<span class="mw-page-title-main">Chronaxie</span> Electrophysiology metric

Chronaxie is the minimum time required for an electric current double the strength of the rheobase to stimulate a muscle or a neuron. Rheobase is the lowest intensity with indefinite pulse duration which just stimulated muscles or nerves. Chronaxie is dependent on the density of voltage-gated sodium channels in the cell, which affect that cell's excitability. Chronaxie varies across different types of tissue: fast-twitch muscles have a lower chronaxie, slow-twitch muscles have a higher one. Chronaxie is the tissue-excitability parameter that permits choice of the optimum stimulus pulse duration for stimulation of any excitable tissue. Chronaxie (c) is the Lapicque descriptor of the stimulus pulse duration for a current of twice rheobasic (b) strength, which is the threshold current for an infinitely long-duration stimulus pulse. Lapicque showed that these two quantities (c,b) define the strength-duration curve for current: I = b(1+c/d), where d is the pulse duration. However, there are two other electrical parameters used to describe a stimulus: energy and charge. The minimum energy occurs with a pulse duration equal to chronaxie. Minimum charge (bc) occurs with an infinitely short-duration pulse. Choice of a pulse duration equal to 10c requires a current of only 10% above rheobase (b). Choice of a pulse duration of 0.1c requires a charge of 10% above the minimum charge (bc).

<span class="mw-page-title-main">Microneurography</span>

Microneurography is a neurophysiological method employed to visualize and record the traffic of nerve impulses that are conducted in peripheral nerves of waking human subjects. It can also be used in animal recordings. The method has been successfully employed to reveal functional properties of a number of neural systems, e.g. sensory systems related to touch, pain, and muscle sense as well as sympathetic activity controlling the constriction state of blood vessels. To study nerve impulses of an identified nerve, a fine tungsten needle microelectrode is inserted into the nerve and connected to a high input impedance differential amplifier. The exact position of the electrode tip within the nerve is then adjusted in minute steps until the electrode discriminates nerve impulses of interest. A unique feature and a significant strength of the microneurography method is that subjects are fully awake and able to cooperate in tests requiring mental attention, while impulses in a representative nerve fibre or set of nerve fibres are recorded, e.g. when cutaneous sense organs are stimulated or subjects perform voluntary precision movements.

<span class="mw-page-title-main">Radiculopathy</span> Medical condition

Radiculopathy, also commonly referred to as pinched nerve, refers to a set of conditions in which one or more nerves are affected and do not work properly. Radiculopathy can result in pain, weakness, altered sensation (paresthesia) or difficulty controlling specific muscles. Pinched nerves arise when surrounding bone or tissue, such as cartilage, muscles or tendons, put pressure on the nerve and disrupt its function.

Repetitive nerve stimulation is a variant of the nerve conduction study where electrical stimulation is delivered to a motor nerve repeatedly several times per second. By observing the change in the muscle electrical response (CMAP) after several stimulations, a physician can assess for the presence of a neuromuscular junction disease, and differentiate between presynaptic and postsynaptic conditions. The test was first described by German neurologist Friedrich Jolly in 1895, and is also known as Jolly's test.

Clinical Electrophysiological Testing is based on techniques derived from electrophysiology used for the clinical diagnosis of patients. There are many processes that occur in the body which produce electrical signals that can be detected. Depending on the location and the source of these signals, distinct methods and techniques have been developed to properly target them.

Electromyoneurography (EMNG) is the combined use of electromyography and electroneurography This technique allows for the measurement of a peripheral nerve's conduction velocity upon stimulation (electroneurography) alongside electrical recording of muscular activity (electromyography). Their combined use proves to be clinically relevant by allowing for both the source and location of a particular neuromuscular disease to be known, and for more accurate diagnoses.

<span class="mw-page-title-main">Neuromechanics</span> Interdisciplinary field

Neuromechanics is an interdisciplinary field that combines biomechanics and neuroscience to understand how the nervous system interacts with the skeletal and muscular systems to enable animals to move. In a motor task, like reaching for an object, neural commands are sent to motor neurons to activate a set of muscles, called muscle synergies. Given which muscles are activated and how they are connected to the skeleton, there will be a corresponding and specific movement of the body. In addition to participating in reflexes, neuromechanical process may also be shaped through motor adaptation and learning.

Electrodiagnosis (EDX) is a method of medical diagnosis that obtains information about diseases by passively recording the electrical activity of body parts or by measuring their response to external electrical stimuli. The most widely used methods of recording spontaneous electrical activity are various forms of electrodiagnostic testing (electrography) such as electrocardiography (ECG), electroencephalography (EEG), and electromyography (EMG). Electrodiagnostic medicine is a medical subspecialty of neurology, clinical neurophysiology, cardiology, and physical medicine and rehabilitation. Electrodiagnostic physicians apply electrophysiologic techniques, including needle electromyography and nerve conduction studies to diagnose, evaluate, and treat people with impairments of the neurologic, neuromuscular, and/or muscular systems. The provision of a quality electrodiagnostic medical evaluation requires extensive scientific knowledge that includes anatomy and physiology of the peripheral nerves and muscles, the physics and biology of the electrical signals generated by muscle and nerve, the instrumentation used to process these signals, and techniques for clinical evaluation of diseases of the peripheral nerves and sensory pathways.

The American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) is a medical society for the medical subspecialty of neuromuscular and electrodiagnostic medicine based in the United States. Members are primarily neurologists and physiatrists—as well as allied health professionals and PhD researchers.

References

  1. Robertson, D. G. E.; Caldwell, G. E.; Hamill, J.; Kamen, G.; Whittlesey, S. N (20 January 2014). Research Methods in Biomechanics. Champaign, IL: Human Kinetics. ISBN   978-0-7360-9340-8. OCLC   842337695.
  2. Paoletti, Michele; Belli, Alberto; Palma, Lorenzo; Vallasciani, Massimo; Pierleoni, Paola (June 2020). "A Wireless Body Sensor Network for Clinical Assessment of the Flexion-Relaxation Phenomenon". Electronics. 9 (6): 1044. doi: 10.3390/electronics9061044 . ISSN   2079-9292.
  3. Electromyography at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  4. Kobylarz, Jhonatan; Bird, Jordan J.; Faria, Diego R.; Ribeiro, Eduardo Parente; Ekárt, Anikó (2020-03-07). "Thumbs up, thumbs down: non-verbal human-robot interaction through real-time EMG classification via inductive and supervised transductive transfer learning". Journal of Ambient Intelligence and Humanized Computing. 11 (12). Springer Science and Business Media LLC: 6021–6031. doi: 10.1007/s12652-020-01852-z . ISSN   1868-5137.
  5. Paoletti, Michele; Belli, Alberto; Palma, Lorenzo; Pierleoni, Paola (December 2020). "Electromyography Pattern Likelihood Analysis for Flexion-Relaxation Phenomenon Evaluation". Electronics. 9 (12): 2046. doi: 10.3390/electronics9122046 . hdl: 11566/290990 . ISSN   2079-9292.
  6. Harvey AM, Masland RL: Actions of durarizing preparations in the human. Journal of Pharmacology And Experimental Therapeutics, Vol. 73, Issue 3, 304-311, 1941
  7. Botelho, Stella Y. (1955). "Comparison of simultaneously recorded electrical and mechanical activity in myasthenia gravis patients and in partially curarized normal humans". The American Journal of Medicine. 19 (5): 693–6. doi:10.1016/S0002-9343(55)80010-1. PMID   13268466.
  8. Christie, T.H.; Churchill-Davidson, H.C. (1958). "The St. Thomas's Hospital nerve stimulator in the diagnosis of prolonged apnoea". Lancet. 1 (7024): 776. doi:10.1016/S0140-6736(58)91583-6. PMID   13526270.
  9. Engbaek, J.; Ostergaard, D.; Viby-Mogensen, J. (1989). "Double burst stimulation (DBS): A new pattern of nerve stimulation to identify residual neuromuscular block". British Journal of Anaesthesia. 62 (3): 274–8. doi: 10.1093/bja/62.3.274 . PMID   2522790. S2CID   32733775.
  10. 1 2 North American Spine Society (February 2013), "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation , North American Spine Society, retrieved 25 March 2013, which cites
  11. 1 2 3 "Not Found - American Association of Neuromuscular & Electrodiagnostic Medicine". www.aanem.org. Archived from the original on 2023-02-25. Retrieved 2014-12-26.
  12. Kędzia, Alicja; Derkowski, Wojciech (2010). "THE USE OF DIFFERENT METHODS OF COMPUTER ANALYSIS OF MOTOR POTENTIALS IN EMG RECORD". Computer-aided Scientific Research, Volume 17.: 161–168. doi:10.5281/zenodo.10615275.
  13. Arthur C. Rothman, MD, v. Selective Insurance Company of America, Supreme Court of New Jersey, Jan. 19
  14. Texas Court of Appeals, Third District, at Austin, Cause No. 03-10-673-CV. April 5, 2012
  15. Section 333.17018 Michigan Compiled Laws http://legislature.mi.gov/doc.aspx?mcl-333-17018
  16. Behm, D.G.; Whittle, J.; Button, D.; Power, K. (2002-01-28). "Intermuscle differences in activation". Muscle & Nerve. 25 (2): 236–243. doi:10.1002/mus.10008. ISSN   0148-639X. PMID   11870692. S2CID   20430130.
  17. Peter Konrad, The ABC of EMG, https://www.noraxon.com/wp-content/uploads/2014/12/ABC-EMG-ISBN.pdf.
  18. Vera-Garcia, Francisco J.; Moreside, Janice M.; McGill, Stuart M. (2010-02-01). "MVC techniques to normalize trunk muscle EMG in healthy women". Journal of Electromyography and Kinesiology. 20 (1): 10–16. doi:10.1016/j.jelekin.2009.03.010. ISSN   1050-6411. PMID   19394867.
  19. Avdan, Goksu; Onal, Sinan; Smith, Bryan K. (2023-04-01). "Normalization of EMG Signals: Optimal MVC Positions for the Lower Limb Muscle Groups in Healthy Subjects". Journal of Medical and Biological Engineering. 43 (2): 195–202. doi:10.1007/s40846-023-00782-3. ISSN   2199-4757. S2CID   257966584.
  20. Hibbs, A.E.; Thompson, K.G.; French, D.N.; Hodgson, D.; Spears, I.R. (February 2011). "Peak and average rectified EMG measures: Which method of data reduction should be used for assessing core training exercises?". Journal of Electromyography and Kinesiology. 21 (1): 102–111. doi:10.1016/j.jelekin.2010.06.001. PMID   20655245.
  21. Buchanan, Thomas S.; Lloyd, David G.; Manal, Kurt; Besier, Thor F. (November 2004). "Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural Command". Journal of Applied Biomechanics. 20 (4): 367–395. doi:10.1123/jab.20.4.367. ISSN   1065-8483. PMC   1357215 . PMID   16467928.
  22. Halperin, Israel; Aboodarda, Saied Jalal; Button, Duane C.; Andersen, Lars L.; Behm, David G. (February 2014). "Roller massager improves range of motion of plantar flexor muscles without subsequent decreases in force parameters". International Journal of Sports Physical Therapy. 9 (1): 92–102. ISSN   2159-2896. PMC   3924613 . PMID   24567860.
  23. Cifrek, M., Medved, V., Tonković, S., & Ostojić, S. (2009). Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics, 24(4), 327-340.
  24. "Electromyography (EMG) and Nerve Conduction Studies: MedlinePlus Medical Test". medlineplus.gov. Retrieved 2023-11-26.
  25. "Electromyography (EMG)". Cleveland Clinic. Retrieved 2023-11-26.
  26. Stashuk, Dan (June 2001). "EMG signal decomposition: how can it be accomplished and used?". Journal of Electromyography and Kinesiology. 11 (3): 151–173. doi:10.1016/S1050-6411(00)00050-X. PMID   11335147.
  27. Raez, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. (Mar 23, 2006). "Techniques of EMG signal analysis: detection, processing, classification and applications". Biol. Proced. Online. 8 (8): 11–35. doi:10.1251/bpo115. PMC   1455479 . PMID   16799694.
  28. Weir, JP; Wagner, LL; Housh, TJ (1992). "Linearity and reliability of the IEMG v. torque relationship for the forearm flexors and leg extensors". American Journal of Physical Medicine & Rehabilitation. 71 (5): 283–287. doi:10.1097/00002060-199210000-00006. PMID   1388975. S2CID   25136951.
  29. Vrendenbregt, J; Rau, G; Housh (1973). "Surface eletromyography in relation to force, muscle length and endurance". New Developments in Electromyography and Clinical Neurophysiology: 607–622.
  30. Kuiken, TA; Lowery, Stoykob (April 2003). "The Effect of Subcutaneous Fat on myoelectric signal amplitude and cross talk". Prosthetics and Orthotics International. 27 (1): 48–54. doi: 10.3109/03093640309167976 . PMID   12812327.
  31. Nigg B.M., & Herzog W., 1999. Biomechanics of the Musculo-Skeletal system. Wiley. Page:349.
  32. Patterson, John R. "Fitwise". Castillo. Brian T. Retrieved 24 June 2009.
  33. "Contents". Muscle & Nerve. 62. July 2020. doi:10.1002/mus.26869 . Retrieved 20 April 2024.
  34. Sandbrink, Friedhelm. "Unit 9: Electromyography". grants.hhp.uh.edu.
  35. Finkelstein, Gabriel (2013). Emil du Bois-Reymond. Cambridge, Massachusetts; London, England: The MIT Press. pp. 97–114. ISBN   9780262019507.
  36. Reaz, M. B. I.; Hussain, M. S.; Mohd-Yasin, F. (2006). "Techniques of EMG signal analysis: detection, processing, classification and applications (Correction)". Biological Procedures Online. 8: 163. doi:10.1251/bpo124. ISSN   1480-9222. PMC   1622762 . PMID   19565309.
  37. Cram, JR.; Steger, JC. (Jun 1983). "EMG scanning in the diagnosis of chronic pain". Biofeedback and Self-Regulation. 8 (2): 229–41. doi:10.1007/BF00998853. PMID   6227339. S2CID   34613989.
  38. "Edward H. Lambert | AANEM Foundation". Archived from the original on 2019-05-02. Retrieved 2019-05-01.
  39. Kapur, Arnav; Sarawgi, Utkarsh; Wadkins, Eric; Wu, Matthew; Hollenstein, Nora; Maes, Pattie (2020-04-30). "Non-Invasive Silent Speech Recognition in Multiple Sclerosis with Dysphonia". Machine Learning for Health Workshop. PMLR: 25–38.
  40. Andreasen, DS.; Gabbert DG,: EMG Switch Navigation of Power Wheelchairs, RESNA 2006.
  41. Park, DG.; Kim, HC. Muscleman: Wireless input device for a fighting action game based on the EMG signal and acceleration of the human forearm.
  42. Hsu, Jeremy (2009-10-29). "The Future of Video Game Input: Muscle Sensors". Live Science. Retrieved 2010-01-16.
  43. "Recognizing Gestures from Forearm EMG Signals". United States Patent and Trademark Office. 2008-06-26. Archived from the original on 2017-01-12. Retrieved 2010-01-16.
  44. "Emteq's Facial Tracking for VR Reads Your Muscle Impulses and More". 27 October 2016.
  45. Statt, Nick (2019-09-23). "Facebook acquires neural interface startup CTRL-Labs for its mind-reading wristband". The Verge. Retrieved 2019-09-27.
  46. Kafka, Peter. "I tried out Meta's Orion AR glasses. I'd buy them in a heartbeat — if they were actually for sale". Business Insider. Retrieved 28 September 2024.

Further reading