Electrical impedance myography

Last updated
Electrical impedance myography
Purposeassessment of muscle health(non invasive)

Electrical impedance myography, or EIM, is a non-invasive technique for the assessment of muscle health that is based on the measurement of the electrical impedance characteristics of individual muscles or groups of muscles. The technique has been used for the purpose of evaluating neuromuscular diseases both for their diagnosis and for their ongoing assessment of progression or with therapeutic intervention. Muscle composition and microscopic structure change with disease, and EIM measures alterations in impedance that occur as a result of disease pathology. [1] [2] EIM has been specifically recognized for its potential as an ALS biomarker (also known as a biological correlate or surrogate endpoint) by Prize4Life, a 501(c)(3) nonprofit organization dedicated to accelerating the discovery of treatments and cures for ALS. The $1M ALS Biomarker Challenge focused on identifying a biomarker precise and reliable enough to cut Phase II drug trials in half. [3] The prize was awarded to Dr. Seward Rutkove, chief, Division of Neuromuscular Disease, in the Department of Neurology at Beth Israel Deaconess Medical Center and Professor of Neurology at Harvard Medical School, for his work in developing the technique of EIM and its specific application to ALS. It is hoped that EIM as a biomarker will result in the more rapid and efficient identification of new treatments for ALS. EIM has shown sensitivity to disease status in a variety of neuromuscular conditions, including radiculopathy, [4] inflammatory myopathy, [5] Duchenne muscular dystrophy, [6] and spinal muscular atrophy. [7]

Contents

In addition to the assessment of neuromuscular disease, EIM also has the prospect of serving as a convenient and sensitive measure of muscle condition. Work in aging populations [8] and individuals with orthopedic injuries [9] indicates that EIM is very sensitive to muscle atrophy and disuse and is conversely likely sensitive to muscle conditioning and hypertrophy. [10] Work on mouse and rats models, including a study of mice on board the final Space Shuttle mission (STS-135), [11] has helped to confirm this potential value.

Underlying concepts

Interest in electrical impedance dates back to the turn of the 20th century, when physiologist Louis Lapicque postulated an elementary circuit to model membranes of nerve cells. Scientists experimented with variations on this model until 1940, when Kenneth Cole developed a circuit model that accounted for the impedance properties of both cell membranes and intracellular fluid. [12]

Like all impedance-based methods, EIM hinges on a simplified model of muscle tissue as an RC circuit. This model attributes the resistive component of the circuit to the resistance of extracellular and intracellular fluids, and the reactive component to the capacitive effects of cell membranes. [13] The integrity of individual cell membranes has a significant effect on the tissue's impedance; hence, a muscle's impedance can be used to measure the tissue's degradation in disease progression. In neuromuscular disease, a variety of factors can influence the compositional and micro structural aspects of muscle, including most notably muscle fiber atrophy and disorganization, the deposition of fat and connective tissues, as occurs in muscular dystrophy, and the presence of inflammation, among many other pathologies. EIM captures these changes in the tissue as a whole by measuring its impedance characteristics across multiple frequencies and at multiple angles relative to the major muscle fiber direction. [2]

In EIM, impedance is separated into resistance and reactance, its real and imaginary components. From this, one can compute the muscle's phase, which represents the time-shift that a sinusoid undergoes when passing through the muscle. [13] For a given resistance (R) and reactance (X), phase (θ) can be calculated. In current work, all three parameters appear to play important roles depending exactly on which diseases are being studied and how the technology is being applied. [1]

EIM can also be impacted by the thickness of the skin and subcutaneous fat overlying a region of muscle. [14] However, electrode designs can be created that can circumvent the effect to a large extent and thus still provide primary muscle data. [15] Moreover, the use of multifrequency measurements can also assist with this process of disentangling the effects of fat from those of muscle. [16] From this information, it also becomes possible to infer/calculate the approximate amount of fat overlying a muscle in a given region.

Multifrequency measurements

Both resistance and reactance depend on the input frequency of the signal. Because changes in frequency shift the relative contributions of resistance (fluid) and reactance (membrane) to impedance, multifrequency EIM may allow a more comprehensive assessment of disease. [17] Resistance, reactance, or phase can be plotted as a function of frequency to demonstrate the differences in frequency dependence between healthy and diseased groups. Diseased muscle exhibits an increase in reactance and phase with increasing frequency, while reactance and phase values of healthy muscle increase with frequency until 50–100 kHz, at which point they begin to decrease as a function of frequency. [18] Frequencies ranging from 500 Hz to 2 MHz are used to determine the frequency spectrum for a given muscle.

Muscle anisotropy

Electrical impedance of muscle tissue is anisotropic; current flowing parallel to muscle fibers flows differently from current flowing orthogonally across the fibers. [19] Current flowing orthogonally across a muscle encounters more cell membranes, thus increasing resistance, reactance, and phase values. By taking measurements at different angles with respect to muscle fibers, EIM can be used to determine the anisotropy of a given muscle. Anisotropy tends to be shown either as a graph plotting resistance, reactance, or phase as a function of angle with respect to the direction of muscle fibers or as a ratio of transverse (perpendicular to fibers) measurement to longitudinal measurement (parallel to muscle fibers) of a given impedance factor. [20]

Muscle anisotropy also changes with neuromuscular disease. EIM has shown a difference between anisotropy profiles of neuromuscular disease patients and healthy controls. In addition, EIM can use anisotropy to discriminate between myopathic and neurogenic disease. [2] Different forms of neuromuscular disease have unique anisotropies. Myopathic disease is characterized by decreased anisotropy. Neurogenic disease produces a less predictable anisotropy. The angle of lowest phase may be shifted from the parallel position, and the anisotropy as a whole is often greater than that of a healthy control.

Measurement approaches

In general, to apply the technique, a minimum of four surface electrodes are placed over the muscle of interest. A minute alternating current is applied across the outer two electrodes, and voltage signals are recorded by the inner electrodes. The frequency of the applied current and the relationship of the electrode array to the major muscle fiber direction is varied so that a full multifrequency and multidirectional assessment of the muscle can be achieved. [5]

EIM has been performed with a number of different impedance analysis devices. Commercially available systems used for bioimpedance analysis, can be calibrated to measure impedance of individual muscles. A suitable impedance analyzer can also be custom built using a lock-in amplifier to produce the signal and a low-capacitance probe, such as the Tektronix P6243, to record voltages from the surface electrodes. [2]

Such methods, however, are slow and clumsy to apply given the need for careful electrode positioning over a muscle of interest and the potential for misalignment of electrodes and inaccuracy. Accordingly, an initial hand-held system was constructed using multiple components with an electrode head that could be placed directly on the patient. [21] The device featured an array of electrode plates, which could be selectively activated to perform impedance measurements in arbitrary orientations. [22] The oscilloscopes were programmed to produce a compound sinusoid signal, which could be used to measure the impedance at multiple frequencies simultaneously via a Fast Fourier transform.

Since that initial system was created, other handheld commercial systems are being developed, such as Skulpt, for use in both neuromuscular disease assessment [23] and for fitness monitoring, including the calculation of a muscle quality (or MQ) value. [24] This latter value aims to provide an approximate assessment of the relative force-generating capacity of muscle for a given cross-sectional area of tissue. Muscle quality, for example, is a measure used in the assessment of sarcopenia.

Comparison with standard bioelectrical impedance analysis

Standard bioelectrical impedance analysis (BIA), like EIM, also employs a weak, high frequency electric current to measure characteristics of the human body. In standard BIA, unlike EIM, electric current is passed between electrodes placed on the hands and feet, and the impedance characteristics of the entire current path are measured. Thus, the measured impedance characteristics are relatively nonspecific since they encompass much of the body including the entire length of the extremities, the chest, abdomen and pelvis; accordingly, only summary whole-body measures of lean body mass and % fat can be offered. Moreover, in BIA, current travels the path of least resistance, and thus any factors that alter the current path will cause variability in the data. For example, the expansion of large vessels (e.g., veins) with increasing hydration will offer a low-resistance path, and thus distorting the resulting data. In addition, changes in abdominal contents will similarly alter the data. Body position can also have substantial effects, with joint position contributing to variations in the data. EIM, in contrast, measures only the superficial aspects of individual muscles and is relatively unaffected by body or limb position or hydration status. [25] The differences between EIM and standard BIA were exemplified in one study in amyotrophic lateral sclerosis (ALS) which showed that EIM was effectively able to track progression in 60 ALS patients whereas BIA was not. [26]

Related Research Articles

In neuroscience, an F wave is one of several motor responses which may follow the direct motor response (M) evoked by electrical stimulation of peripheral motor or mixed nerves. F-waves are the second of two late voltage changes observed after stimulation is applied to the skin surface above the distal region of a nerve, in addition to the H-reflex which is a muscle reaction in response to electrical stimulation of innervating sensory fibers. Traversal of F-waves along the entire length of peripheral nerves between the spinal cord and muscle, allows for assessment of motor nerve conduction between distal stimulation sites in the arm and leg, and related motoneurons (MN's) in the cervical and lumbosacral cord. F-waves are able to assess both afferent and efferent loops of the alpha motor neuron in its entirety. As such, various properties of F-wave motor nerve conduction are analyzed in nerve conduction studies (NCS), and often used to assess polyneuropathies, resulting from states of neuronal demyelination and loss of peripheral axonal integrity.

<span class="mw-page-title-main">Electromyography</span> Electrodiagnostic medicine technique

Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG is performed using an instrument called an electromyograph to produce a record called an electromyogram. An electromyograph detects the electric potential generated by muscle cells when these cells are electrically or neurologically activated. The signals can be analyzed to detect abnormalities, activation level, or recruitment order, or to analyze the biomechanics of human or animal movement. Needle EMG is an electrodiagnostic medicine technique commonly used by neurologists. Surface EMG is a non-medical procedure used to assess muscle activation by several professionals, including physiotherapists, kinesiologists and biomedical engineers. In computer science, EMG is also used as middleware in gesture recognition towards allowing the input of physical action to a computer as a form of human-computer interaction.

<span class="mw-page-title-main">End-plate potential</span>

End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynaptic terminals of muscle fibers have a large, saucer-like appearance. When an action potential reaches the axon terminal of a motor neuron, vesicles carrying neurotransmitters are exocytosed and the contents are released into the neuromuscular junction. These neurotransmitters bind to receptors on the postsynaptic membrane and lead to its depolarization. In the absence of an action potential, acetylcholine vesicles spontaneously leak into the neuromuscular junction and cause very small depolarizations in the postsynaptic membrane. This small response (~0.4mV) is called a miniature end plate potential (MEPP) and is generated by one acetylcholine-containing vesicle. It represents the smallest possible depolarization which can be induced in a muscle.

<span class="mw-page-title-main">Dielectric spectroscopy</span>

Dielectric spectroscopy measures the dielectric properties of a medium as a function of frequency. It is based on the interaction of an external field with the electric dipole moment of the sample, often expressed by permittivity.

The sucrose gap technique is used to create a conduction block in nerve or muscle fibers. A high concentration of sucrose is applied to the extracellular space, which prevents the correct opening and closing of sodium and potassium channels, increasing resistance between two groups of cells. It was originally developed by Robert Stämpfli for recording action potentials in nerve fibers, and is particularly useful for measuring irreversible or highly variable pharmacological modifications of channel properties since untreated regions of membrane can be pulled into the node between the sucrose regions.

In neuroscience, single-unit recordings provide a method of measuring the electro-physiological responses of a single neuron using a microelectrode system. When a neuron generates an action potential, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the soma and axon. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time. These microelectrodes must be fine-tipped, impedance matching; they are primarily glass micro-pipettes, metal microelectrodes made of platinum, tungsten, iridium or even iridium oxide. Microelectrodes can be carefully placed close to the cell membrane, allowing the ability to record extracellularly.

<span class="mw-page-title-main">Nerve conduction velocity</span> Speed at which an electrochemical impulse propagates down a neural pathway

In neuroscience, nerve conduction velocity (CV) is the speed at which an electrochemical impulse propagates down a neural pathway. Conduction velocities are affected by a wide array of factors, which include age, sex, and various medical conditions. Studies allow for better diagnoses of various neuropathies, especially demyelinating diseases as these conditions result in reduced or non-existent conduction velocities. CV is an important aspect of nerve conduction studies.

<span class="mw-page-title-main">Neuromuscular disease</span> Medical condition

A neuromuscular disease is any disease affecting the peripheral nervous system (PNS), the neuromuscular junction, or skeletal muscle, all of which are components of the motor unit. Damage to any of these structures can cause muscle atrophy and weakness. Issues with sensation can also occur.

In physical fitness, body composition is used to describe the percentages of fat, bone, water, and muscle in human bodies. Because muscular tissue takes up less space in the body than fat tissue, body composition, as well as weight, determines leanness. Two people of the same gender, height, and body weight may have completely different body types as a consequence of having different body compositions.

Bioelectrical impedance analysis (BIA) is a method for estimating body composition, in particular body fat and muscle mass, where a weak electric current flows through the body and the voltage is measured in order to calculate impedance of the body. Most body water is stored in muscle. Therefore, if a person is more muscular there is a high chance that the person will also have more body water, which leads to lower impedance. Since the advent of the first commercially available devices in the mid-1980s the method has become popular owing to its ease of use and portability of the equipment. It is familiar in the consumer market as a simple instrument for estimating body fat. BIA actually determines the electrical impedance, or opposition to the flow of an electric current through body tissues which can then be used to estimate total body water (TBW), which can be used to estimate fat-free body mass and, by difference with body weight, body fat.

Electrical muscle stimulation (EMS), also known as neuromuscular electrical stimulation (NMES) or electromyostimulation, is the elicitation of muscle contraction using electric impulses. EMS has received an increasing amount of attention in the last few years for many reasons: it can be utilized as a strength training tool for healthy subjects and athletes; it could be used as a rehabilitation and preventive tool for people who are partially or totally immobilized; it could be utilized as a testing tool for evaluating the neural and/or muscular function in vivo. EMS has been proven to be more beneficial prior to exercise and activity due to the early muscle activation. Recent studies have found that electrostimulation has been proven to be ineffective during post exercise recovery and can even lead to an increase in Delayed onset muscle soreness (DOMS).

<span class="mw-page-title-main">Chronaxie</span> Electrophysiology metric

Chronaxie is the minimum time required for an electric current double the strength of the rheobase to stimulate a muscle or a neuron. Rheobase is the lowest intensity with indefinite pulse duration which just stimulated muscles or nerves. Chronaxie is dependent on the density of voltage-gated sodium channels in the cell, which affect that cell’s excitability. Chronaxie varies across different types of tissue: fast-twitch muscles have a lower chronaxie, slow-twitch muscles have a higher one. Chronaxie is the tissue-excitability parameter that permits choice of the optimum stimulus pulse duration for stimulation of any excitable tissue. Chronaxie (c) is the Lapicque descriptor of the stimulus pulse duration for a current of twice rheobasic (b) strength, which is the threshold current for an infinitely long-duration stimulus pulse. Lapicque showed that these two quantities (c,b) define the strength-duration curve for current: I = b(1+c/d), where d is the pulse duration. However, there are two other electrical parameters used to describe a stimulus: energy and charge. The minimum energy occurs with a pulse duration equal to chronaxie. Minimum charge (bc) occurs with an infinitely short-duration pulse. Choice of a pulse duration equal to 10c requires a current of only 10% above rheobase (b). Choice of a pulse duration of 0.1c requires a charge of 10% above the minimum charge (bc).

Impedance cardiography (ICG) is a non-invasive technology measuring total electrical conductivity of the thorax and its changes in time to process continuously a number of cardiodynamic parameters, such as stroke volume (SV), heart rate (HR), cardiac output (CO), ventricular ejection time (VET), pre-ejection period and used to detect the impedance changes caused by a high-frequency, low magnitude current flowing through the thorax between additional two pairs of electrodes located outside of the measured segment. The sensing electrodes also detect the ECG signal, which is used as a timing clock of the system.

<span class="mw-page-title-main">Microneurography</span>

Microneurography is a neurophysiological method employed to visualize and record the traffic of nerve impulses that are conducted in peripheral nerves of waking human subjects. It can also be used in animal recordings. The method has been successfully employed to reveal functional properties of a number of neural systems, e.g. sensory systems related to touch, pain, and muscle sense as well as sympathetic activity controlling the constriction state of blood vessels. To study nerve impulses of an identified nerve, a fine tungsten needle microelectrode is inserted into the nerve and connected to a high input impedance differential amplifier. The exact position of the electrode tip within the nerve is then adjusted in minute steps until the electrode discriminates nerve impulses of interest. A unique feature and a significant strength of the microneurography method is that subjects are fully awake and able to cooperate in tests requiring mental attention, while impulses in a representative nerve fibre or set of nerve fibres are recorded, e.g. when cutaneous sense organs are stimulated or subjects perform voluntary precision movements.

Sudomotor function refers to the autonomic nervous system control of sweat gland activity in response to various environmental and individual factors. Sweat production is a vital thermoregulatory mechanism used by the body to prevent heat-related illness as the evaporation of sweat is the body’s most effective method of heat reduction and the only cooling method available when the air temperature rises above skin temperature. In addition, sweat plays key roles in grip, microbial defense, and wound healing.

<span class="mw-page-title-main">Denervation</span> Loss of nerve supply

Denervation is any loss of nerve supply regardless of the cause. If the nerves lost to denervation are part of the neuronal communication to a specific function in the body then altered or a loss of physiological functioning can occur. Denervation can be caused by injury or be a symptom of a disorder like ALS, post-polio syndrome, or POTS. Additionally, it can be a useful surgical technique to alleviate major negative symptoms, such as in renal denervation. Denervation can have many harmful side effects such as increased risk of infection and tissue dysfunction.

John Peter Wikswo, Jr. is a biological physicist at Vanderbilt University. He was born in Lynchburg, Virginia, United States.

Electromyoneurography (EMNG) is the combined use of electromyography and electroneurography This technique allows for the measurement of a peripheral nerve's conduction velocity upon stimulation (electroneurography) alongside electrical recording of muscular activity (electromyography). Their combined use proves to be clinically relevant by allowing for both the source and location of a particular neuromuscular disease to be known, and for more accurate diagnoses.

Impedance microbiology is a microbiological technique used to measure the microbial number density of a sample by monitoring the electrical parameters of the growth medium. The ability of microbial metabolism to change the electrical conductivity of the growth medium was discovered by Stewart and further studied by other scientists such as Oker-Blom, Parson and Allison in the first half of 20th century. However, it was only in the late 1970s that, thanks to computer-controlled systems used to monitor impedance, the technique showed its full potential, as discussed in the works of Fistenberg-Eden & Eden, Ur & Brown and Cady.

Electrochemical skin conductance (ESC) is an objective, non-invasive and quantitative electrophysiological measure. It is based on reverse iontophoresis and (multiple) steady chronoamperometry.

References

  1. 1 2 Rutkove, Seward (2009). "Electrical impedance myography: Background, current state, and future directions". Muscle Nerve. 40 (6): 936–946. doi:10.1002/mus.21362. PMC   2824130 . PMID   19768754.
  2. 1 2 3 4 Garmirian, LP; Chin AB; Rutkove SB (2008). "Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy". Muscle and Nerve. 39 (1): 16–24. doi:10.1002/mus.21115. PMC   2719295 . PMID   19058193.
  3. "Prize4Life - Prize Model - Biomarker Prize" . Retrieved 13 January 2016.
  4. Rutkove SB, Esper GJ, Lee KS, Aaron R, Shiffman CA (2005). "Electrical impedance myography in the detection of radiculopathy". Muscle & Nerve. 32 (3): 335–41. doi:10.1002/mus.20377. PMID   15948202. S2CID   37562321.
  5. 1 2 Tarulli, AW; Esper GJ; Lee KS; Aaron R; Shiffman CA; Rutkove SB (2005). "Electrical impedance myography in the bedside assessment of inflammatory myopathy". Neurology. 65 (3): 451–2. doi:10.1212/01.wnl.0000172338.95064.cb. PMID   16087913. S2CID   19732371.
  6. Rutkove SB, Geisbush TR, Mijailovic A, Shklyar I, Pasternak A, Visyak N, Wu JS, Zaidman C, Darras BT (Jul 2014). "Cross-sectional evaluation of electrical impedance myography and quantitative ultrasound for the assessment of Duchenne muscular dystrophy in a clinical trial setting". Pediatr Neurol. 51 (1): 88–92. doi:10.1016/j.pediatrneurol.2014.02.015. PMC   4063877 . PMID   24814059.
  7. Rutkove SB, Gregas MC, Darras BT (May 2012). "Electrical impedance myography in spinal muscular atrophy: a longitudinal study". Muscle Nerve. 45 (5): 642–7. doi:10.1002/mus.23233. PMID   22499089. S2CID   2615976.
  8. Kortman HG, Wilder SC, Geisbush TR, Narayanaswami P, Rutkove SB (2013). "Age and gender associated differences in electrical impedance values of skeletal muscle". Physiological Measurement. 34 (12): 1611–22. Bibcode:2013PhyM...34.1611K. doi:10.1088/0967-3334/34/12/1611. PMC   3895401 . PMID   24165434.
  9. Tarulli AW, Duggal N, Esper GJ, Garmirian LP, Fogerson PM, Lin CH, Rutkove SB (Oct 2009). "Electrical impedance myography in the assessment of disuse atrophy". Arch Phys Med Rehabil. 90 (10): 1806–10. doi:10.1016/j.apmr.2009.04.007. PMC   2829834 . PMID   19801075.
  10. Lungu C, Tarulli AW, Tarsy D, Mongiovi P, Vanderhorst VG, Rutkove SB (2011). "Quantifying Muscle Asymmetries in Cervical Dystonia with Electrical Impedance: A Preliminary Assessment". Clin Neurophysiol. 122 (5): 1027–31. doi:10.1016/j.clinph.2010.09.013. PMC   3044213 . PMID   20943436.
  11. Sung M, Li J, Spieker AJ, Spatz J, Ellman R, Ferguson VL, Bateman TA, Rosen GD, Bouxsein M, Rutkove SB (Dec 2013). "Spaceflight and hind limb unloading induce similar changes in electrical impedance characteristics of mouse gastrocnemius muscle". J Musculoskelet Neuronal Interact. 13 (4): 405–11. PMC   4653813 . PMID   24292610.
  12. McAdams, ET; Jossinet J (1995). "Tissue impedance: a historical overview". Physiological Measurement. 16 (3 Suppl A): A1–A13. doi:10.1088/0967-3334/16/3A/001. PMID   8528108. S2CID   250894468.
  13. 1 2 Rutkove, SB; Aaron R; Shiffman CA (2002). "Localized bioimpedance analysis in the evaluation of neuromuscular disease". Muscle and Nerve. 25 (3): 390–7. doi:10.1002/mus.10048. PMID   11870716. S2CID   26960323.
  14. Sung M, Spieker AJ, Narayanaswami P, Rutkove SB (2013). "The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance". Clin Neurophysiol. 124 (2): 400–4. doi:10.1016/j.clinph.2012.07.013. PMC   3543755 . PMID   22917581.
  15. Jafarpoor M, Li J, White JK, Rutkove SB (2013). "Optimizing Electrode Configuration for Electrical Impedance Measurements of Muscle via the Finite Element Method" (PDF). IEEE Trans Biomed Eng. 60 (5): 1446–52. doi:10.1109/TBME.2012.2237030. PMC   3984469 . PMID   23314763.
  16. Schwartz, Stefan; Geisbush, Tom R.; Mijailovic, Aleksandar; Pasternak, Amy; Darras, Basil T.; Rutkove, Seward B. (January 2015). "DEFINE_ME_WA". Clinical Neurophysiology. 126 (1): 202–208. doi:10.1016/j.clinph.2014.05.007. PMC   4234696 . PMID   24929900 . Retrieved 13 January 2016.
  17. Shiffman, CA; Kashuri H; Aaron R (2008). "Electrical impedance myography at frequencies up to 2 MHz". Physiological Measurement. 29 (6): S345–63. Bibcode:2008PhyM...29S.345S. doi:10.1088/0967-3334/29/6/S29. PMID   18544820. S2CID   2617398.
  18. Esper GJ, Shiffman CA, Aaron R, Lee KS, Rutkove SB (2006). "Assessing neuromuscular disease with multifrequency electrical impedance myography". Muscle Nerve. 34 (5): 595–602. doi:10.1002/mus.20626. PMID   16881067. S2CID   22989701.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. Tarulli, AW; Chin AB; Partida RA; Rutkove SB (2006). "Electrical impedance in bovine skeletal muscle as a model for the study of neurological disease". Physiological Measurement. 27 (12): 1269–79. Bibcode:2006PhyM...27.1269T. doi:10.1088/0967-3334/27/12/002. PMID   17135699. S2CID   21880505.
  20. Chin, AB; Garmirian LP; Nie R; Rutkove SB (2008). "Optimizing measurement of the electrical anisotropy of muscle". Muscle and Nerve. 37 (5): 560–5. doi:10.1002/mus.20981. PMC   2742672 . PMID   18404614.
  21. Ogunnika, OT; Scharfstien M; Cooper RC; Ma H; Dawson JL; Rutkove SB (2008). "A handheld Electrical Impedance Myography probe for the assessment of neuromuscular disease". 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 2008. pp. 3566–9. doi:10.1109/IEMBS.2008.4649976. ISBN   978-1-4244-1814-5. PMC   2706091 . PMID   19163479.
  22. "Monitoring Muscle". MIT Technology Review. Retrieved 13 January 2016.
  23. "Skulpt Health". Archived from the original on 19 January 2016. Retrieved 13 January 2016.
  24. "Skulpt - Measure Body Fat Percentage and Muscle Quality". SKULPT. Retrieved 13 January 2016.
  25. Jia, Li; Sanchez, B.; Rutkove, S. B. (2014). "Error". Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2014: 514–7. doi:10.1109/EMBC.2014.6943641. PMC   4287983 . PMID   25570009.
  26. Rutkove SB, Caress JB, Cartwright MS, Burns TM, Warder J, David WS, Goyal N, Maragakis NJ, Clawson L, Benatar M, Usher S, Sharma KR, Gautam S, Narayanaswami P, Raynor EM, Watson ML, Shefner JM (2012). "Electrical impedance myography as a biomarker to assess ALS progression". Amyotroph Lateral Scler. 13 (5): 439–45. doi:10.3109/17482968.2012.688837. PMC   3422377 . PMID   22670883.