Muscular dystrophy

Last updated
Muscular dystrophy
MuscularDystrophy.png
In affected muscle (right), the tissue has become disorganized and the concentration of dystrophin (green) is greatly reduced, compared to normal muscle (left).
Specialty Neuromuscular medicine
Symptoms Increasing weakening, breakdown of skeletal muscles, trouble walking [1] [2]
DurationChronic [1]
Types> 30, including Duchenne muscular dystrophy, Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, limb–girdle muscular dystrophy, myotonic dystrophy [1] [2]
Causes Genetic (X-linked recessive, autosomal recessive, or autosomal dominant) [2]
Diagnostic method Genetic testing [2]
Treatment Pharmacotherapy, physical therapy, braces, corrective surgery, assisted ventilation [1] [2]
Prognosis Depends on the particular disorder [1]

Muscular dystrophies (MD) are a genetically and clinically heterogeneous group of rare neuromuscular diseases that cause progressive weakness and breakdown of skeletal muscles over time. [1] The disorders differ as to which muscles are primarily affected, the degree of weakness, how fast they worsen, and when symptoms begin. [1] Some types are also associated with problems in other organs. [2]

Contents

Over 30 different disorders are classified as muscular dystrophies. [1] [2] Of those, Duchenne muscular dystrophy (DMD) accounts for approximately 50% of cases and affects males beginning around the age of four. [1] Other relatively common muscular dystrophies include Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, and myotonic dystrophy, [1] whereas limb–girdle muscular dystrophy and congenital muscular dystrophy are themselves groups of several – usually extremely rare – genetic disorders.

Muscular dystrophies are caused by mutations in genes, usually those involved in making muscle proteins. [2] The muscle protein, dystrophin, is in most muscle cells and works to strengthen the muscle fibers and protect them from injury as muscles contract and relax. [3] It links the muscle membrane to the thin muscular filaments within the cell. Dystrophin is an integral part of the muscular structure. An absence of dystrophin can cause impairments: healthy muscle tissue can be replaced by fibrous tissue and fat, causing an inability to generate force. [4] Respiratory and cardiac complications can occur as well. These mutations are either inherited from parents or may occur spontaneously during early development. [2] Muscular dystrophies may be X-linked recessive, autosomal recessive, or autosomal dominant. [2] Diagnosis often involves blood tests and genetic testing. [2]

There is no cure for any disorder from the muscular dystrophy group. [1] Several drugs designed to address the root cause are under development, including gene therapy (Microdystrophin), and antisense drugs (Ataluren, Eteplirsen etc.). [2] Other medications used include corticosteroids (Deflazacort), calcium channel blockers (Diltiazem) to slow skeletal and cardiac muscle degeneration, anticonvulsants to control seizures and some muscle activity, and immunosuppressants (Vamorolone) to delay damage to dying muscle cells. [1] Physical therapy, braces, and corrective surgery may help with some symptoms [1] while assisted ventilation may be required in those with weakness of breathing muscles. [2]

Outcomes depend on the specific type of disorder. [1] Many affected people will eventually become unable to walk [2] and Duchenne muscular dystrophy in particular is associated with shortened life expectancy.

Muscular dystrophy was first described in the 1830s by Charles Bell. [2] The word "dystrophy" comes from the Greek dys, meaning "no, un-" and troph- meaning "nourish". [2]

Signs and symptoms

Severe limb deformities and contractures indicative of muscular dystrophy Gould Pyle 216.jpg
Severe limb deformities and contractures indicative of muscular dystrophy

The signs and symptoms consistent with muscular dystrophy are: [5]

Causes

The majority of muscular dystrophies are inherited; the different muscular dystrophies follow various inheritance patterns (X-linked, autosomal recessive or autosomal dominant). In a small percentage of patients, the disorder may have been caused by a de novo (spontaneous) mutation. [6] [7]

Diagnosis

The diagnosis of muscular dystrophy is based on the results of muscle biopsy, increased creatine phosphokinase (CpK3), electromyography, and genetic testing. A physical examination and the patient's medical history will help the doctor determine the type of muscular dystrophy. Specific muscle groups are affected by different types of muscular dystrophy. [8]

An MRI can be used to assess the white matter of the nervous system and measure the merosin levels in young boys. An absence of merosin in young boys will result with neurological deficits and changes in the white matter. [9]

Classification

Disorder name OMIM GeneInheritance patternAge of onsetMuscles affectedDescription
Becker muscular dystrophy 300376 DMD XR ChildhoodDistal limbs progressing to generalised weaknessA less severe variant of Duchenne muscular dystrophy, [10] affects predominantly boys.
Congenital muscular dystrophy MultipleMultiple AD, AR At birthGeneralised weaknessSymptoms include general muscle weakness and possible joint deformities. Disease progresses slowly, and lifespan is shortened.

Congenital muscular dystrophy includes several disorders with a range of symptoms. Muscle degeneration may be mild or severe. Problems may be restricted to skeletal muscle, or muscle degeneration may be paired with effects on the brain and other organ systems. [11]

Several forms of the congenital muscular dystrophies are caused by defects in proteins thought to have some relationship to the dystrophin-glycoprotein complex and to the connections between muscle cells and their surrounding cellular structure. Some forms of congenital muscular dystrophy show severe brain malformations, such as lissencephaly and hydrocephalus. [10]

Duchenne muscular dystrophy 310200 DMD XR ChildhoodDistal limbs progressing to generalised weakness, involving respiratory musclesThe most common childhood form of muscular dystrophy, affects predominantly boys (mild symptoms may occur in female carriers). Characterised by progressive muscle wasting. Clinical symptoms become evident when the child begins walking. By age 10, the child may need braces and by age 12, most patients are unable to walk. [12] Typical lifespans range from 15 to 45. [12] Sporadic mutations in this gene occur frequently. [13]
Distal muscular dystrophy 254130 DYSF AD, AR 20–60 yearsDistal muscles in hands, forearms and lower legsProgress is slow and not life-threatening. [14]

Miyoshi myopathy, one of the distal muscular dystrophies, causes initial weakness in the calf muscles, and is caused by defects in the same gene responsible for one form of limb–girdle muscular dystrophy. [10]

Emery–Dreifuss muscular dystrophy MultipleMultiple XR, AD, AR Childhood, early teenage yearsDistal limb muscles, limb-girdle, heartSymptoms include muscle weakness and wasting, starting in the distal limb muscles and progressing to involve the limb–girdle muscles. Most patients also have cardiac conduction defects and arrhythmias. [15] [16]
Facioscapulohumeral muscular dystrophy 158900 DUX4 AD AdolescenceFace, shoulders, upper arms, progressing to other musclesCauses progressive weakness, initially in the muscles of the face, shoulders, and upper arms. Additional muscles are often affected. [17] Affected individuals can become severely disabled, with 20% requiring a wheelchair by age 50. [18] 30% of cases involve spontaneous mutations. [18] Penetrance and severity seem to be lower in females compared to males. [18] [19]
Limb–girdle muscular dystrophy MultipleMultiple AD, AR AnyUpper arms and legsThe person normally leads a normal life with some assistance. Rare cardiopulmonary complications can be life-threatening. [20]
Myotonic muscular dystrophy 160900
602668
DMPK
CNBP
AD AdulthoodSkeletal muscles, heart, other muscle groupsPresents with myotonia (delayed relaxation of muscles), as well as muscle wasting and weakness. [21] Varies in severity and manifestations and affects many body systems in addition to skeletal muscles, including the heart, endocrine organs, and eyes. [22]
Oculopharyngeal muscular dystrophy 164300 PABPN1 AD, rarely AR 40–50 yearsEye muscles, face, throat, pelvis, shoulders

Management

Ankle foot orthosis Ankle Foot Orthosis leg brace worn on the left foot with ankle hinge.jpg
Ankle foot orthosis

Currently, there is no cure for muscular dystrophy. In terms of management, physical therapy, occupational therapy, orthotic intervention (e.g., ankle-foot orthosis), [23] [24] speech therapy, and respiratory therapy may be helpful. [23] Low intensity corticosteroids such as prednisone, and deflazacort may help to maintain muscle tone. [25] Orthoses (orthopedic appliances used for support) and corrective orthopedic surgery may be needed to improve the quality of life in some cases. [2] The cardiac problems that occur with Emery–Dreifuss muscular dystrophy (EDMD) and myotonic muscular dystrophy may require a pacemaker. [26] The myotonia (delayed relaxation of a muscle after a strong contraction) occurring in myotonic muscular dystrophy may be treated with medications such as quinine. [27]

Low-intensity, assisted exercises (dynamic exercise training, or assisted bicycle training of the arms and legs during a 24-week trial significantly delays the functional loss of muscular dystrophy. It can be done in a safe and feasible manner, even with boys late in their ambulation stage. However, eccentric exercises, or intense exercises causing soreness should not be used as they can cause further damage. [28]

Occupational therapy assists the individual with MD to engage in activities of daily living (such as self-feeding and self-care activities) and leisure activities at the most independent level possible. This may be achieved with use of adaptive equipment or the use of energy-conservation techniques. Occupational therapy may implement changes to a person's environment, both at home or work, to increase the individual's function and accessibility; furthermore, it addresses psychosocial changes and cognitive decline which may accompany MD, and provides support and education about the disease to the family and individual. [29]

Prognosis

Prognosis depends on the individual form of muscular dystrophy. Some dystrophies cause progressive weakness and loss of muscle function, which may result in severe physical disability and a life-threatening deterioration of respiratory muscles or heart. Other dystrophies do not affect life expectancy and only cause relatively mild impairment. [2]

History

In the 1860s, descriptions of boys who grew progressively weaker, lost the ability to walk, and died at an early age became more prominent in medical journals. In the following decade, [30] French neurologist Guillaume Duchenne gave a comprehensive account of the most common and severe form of the disease, which now carries his name – Duchenne MD. [31]

Society and culture

In 1966 in the US and Canada, Jerry Lewis and the Muscular Dystrophy Association (MDA) began the annual Labor Day telecast The Jerry Lewis Telethon , significant in raising awareness of muscular dystrophy in North America. Disability rights advocates, however, have criticized the telethon for portraying those living with the disease as deserving pity rather than respect. [32]

On December 18, 2001, the MD CARE Act was signed into law in the US; it amends the Public Health Service Act to provide research for the various muscular dystrophies. This law also established the Muscular Dystrophy Coordinating Committee to help focus research efforts through a coherent research strategy. [33] [34]

See also

Related Research Articles

<span class="mw-page-title-main">Limb–girdle muscular dystrophy</span> Medical condition

Limb–girdle muscular dystrophy (LGMD) is a genetically heterogeneous group of rare muscular dystrophies that share a set of clinical characteristics. It is characterised by progressive muscle wasting which affects predominantly hip and shoulder muscles. LGMD usually has an autosomal pattern of inheritance. It currently has no known cure or treatment.

Myotonia is a symptom of a small handful of certain neuromuscular disorders characterized by delayed relaxation of the skeletal muscles after voluntary contraction or electrical stimulation, and the muscle shows an abnormal EMG.

<span class="mw-page-title-main">Dystrophin</span> Rod-shaped cytoplasmic protein

Dystrophin is a rod-shaped cytoplasmic protein, and a vital part of a protein complex that connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix through the cell membrane. This complex is variously known as the costamere or the dystrophin-associated protein complex (DAPC). Many muscle proteins, such as α-dystrobrevin, syncoilin, synemin, sarcoglycan, dystroglycan, and sarcospan, colocalize with dystrophin at the costamere. It has a molecular weight of 427 kDa

<span class="mw-page-title-main">Duchenne muscular dystrophy</span> Type of muscular dystrophy

Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy that primarily affects boys. Muscle weakness usually begins around the age of four, and worsens quickly. Muscle loss typically occurs first in the thighs and pelvis followed by the arms. This can result in trouble standing up. Most are unable to walk by the age of 12. Affected muscles may look larger due to increased fat content. Scoliosis is also common. Some may have intellectual disability. Females with a single copy of the defective gene may show mild symptoms.

<span class="mw-page-title-main">Becker muscular dystrophy</span> Genetic muscle disorder

Becker muscular dystrophy (BMD) is an X-linked recessive inherited disorder characterized by slowly progressing muscle weakness of the legs and pelvis. It is a type of dystrophinopathy. This is caused by mutations in the dystrophin gene, which encodes the protein dystrophin. Becker muscular dystrophy is related to Duchenne muscular dystrophy in that both result from a mutation in the dystrophin gene, but has a milder course.

<span class="mw-page-title-main">Fukuyama congenital muscular dystrophy</span> Medical condition

Fukuyama congenital muscular dystrophy (FCMD) is a rare, autosomal recessive form of muscular dystrophy (weakness and breakdown of muscular tissue) mainly described in Japan but also identified in Turkish and Ashkenazi Jewish patients; fifteen cases were first described on 1960 by Dr. Yukio Fukuyama.

<span class="mw-page-title-main">Facioscapulohumeral muscular dystrophy</span> Medical condition

Facioscapulohumeral muscular dystrophy (FSHD) is a type of muscular dystrophy, a group of heritable diseases that cause degeneration of muscle and progressive weakness. Per the name, FSHD tends to sequentially weaken the muscles of the face, those that position the scapula, and those overlying the humerus bone of the upper arm. These areas can be spared, and muscles of other areas usually are affected, especially those of the chest, abdomen, spine, and shin. Almost any skeletal muscle can be affected in advanced disease. Abnormally positioned, termed 'winged', scapulas are common, as is the inability to lift the foot, known as foot drop. The two sides of the body are often affected unequally. Weakness typically manifests at ages 15 – 30 years. FSHD can also cause hearing loss and blood vessel abnormalities at the back of the eye.

<span class="mw-page-title-main">Mitochondrial myopathy</span> Medical condition

Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. Adenosine triphosphate (ATP), the chemical used to provide energy for the cell, cannot be produced sufficiently by oxidative phosphorylation when the mitochondrion is either damaged or missing necessary enzymes or transport proteins. With ATP production deficient in mitochondria, there is an over-reliance on anaerobic glycolysis which leads to lactic acidosis either at rest or exercise-induced.

<span class="mw-page-title-main">Neuromuscular disease</span> Medical condition

A neuromuscular disease is any disease affecting the peripheral nervous system (PNS), the neuromuscular junctions, or skeletal muscles, all of which are components of the motor unit. Damage to any of these structures can cause muscle atrophy and weakness. Issues with sensation can also occur.

<span class="mw-page-title-main">Congenital muscular dystrophy</span> Medical condition

Congenital muscular dystrophies are autosomal recessively-inherited muscle diseases. They are a group of heterogeneous disorders characterized by muscle weakness which is present at birth and the different changes on muscle biopsy that ranges from myopathic to overtly dystrophic due to the age at which the biopsy takes place.

<span class="mw-page-title-main">Emery–Dreifuss muscular dystrophy</span> Medical condition

Emery–Dreifuss muscular dystrophy (EDMD) is a type of muscular dystrophy, a group of heritable diseases that cause progressive impairment of muscles. EDMD affects muscles used for movement, causing atrophy, weakness and contractures. It almost always affects the heart, causing abnormal rhythms, heart failure, or sudden cardiac death. It is rare, affecting 0.39 per 100,000 people. It is named after Alan Eglin H. Emery and Fritz E. Dreifuss.

The dystrophin-associated protein complex, also known as the dystrophin-associated glycoprotein complex is a multiprotein complex that includes dystrophin and the dystrophin-associated proteins. It is one of the two protein complexes that make up the costamere in striated muscle cells. The other complex is the integrin-vinculin-talin complex.

<span class="mw-page-title-main">Myotonic dystrophy</span> Genetic disorder that impairs muscle function

Myotonic dystrophy (DM) is a type of muscular dystrophy, a group of genetic disorders that cause progressive muscle loss and weakness. In DM, muscles are often unable to relax after contraction. Other manifestations may include cataracts, intellectual disability and heart conduction problems. In men, there may be early balding and an inability to father children. While myotonic dystrophy can occur at any age, onset is typically in the 20s and 30s.

<span class="mw-page-title-main">Bethlem myopathy</span> Medical condition

Bethlem myopathy is predominantly an autosomal dominant myopathy, classified as a congenital form of limb-girdle muscular dystrophy. There are two types of Bethlem myopathy, based on which type of collagen is affected.

<span class="mw-page-title-main">Ullrich congenital muscular dystrophy</span> Medical condition

Ullrich congenital muscular dystrophy (UCMD) is a form of congenital muscular dystrophy. There are two forms: UCMD1 and UCMD2.

Sunil Pradhan is an Indian neurologist, medical researcher and writer, known for the invention of two electrophysiological techniques. He has also described five medical signs, of which one related to Duchenne muscular dystrophy is known as Pradhan Sign, and the others associated with facioscapulohumeral muscular dystrophy (FSHD) and similar neuro diseases. The Government of India awarded him the Padma Shri, the fourth highest civilian award, in 2014 for his contributions to the field of neuroscience.

Toshifumi (Toshi) Yokota is a medical scientist and professor of medical genetics at the University of Alberta, where he also holds the titles of the Friends of Garrett Cumming Research & Muscular Dystrophy Canada Endowed Research Chair and the Henri M. Toupin Chair in Neurological Science. He is best known for his pioneering research in antisense therapy for muscular dystrophy that led to the development of an FDA-approved drug viltolarsen. His research interests include precision medicine for muscular dystrophy and genetic diseases. He has co-edited three books published in the Methods in Molecular Biology series from Humana Press, Springer-Nature, and has published more than 100 refereed papers and patents. He is a fellow of the Canadian Academy of Health Sciences, a member of the editorial boards for the International Journal of Molecular Sciences, Genes, Frontiers in Genome Editing, Frontiers in Physiology, and Nucleic Acid Therapeutics, a member of the Medical and Scientific Advisory Committee of Muscular Dystrophy Canada, and a co-founder of the Canadian Neuromuscular Network (CAN-NMD).

<span class="mw-page-title-main">Pseudohypertrophy</span> False enlargement of muscle due to infiltration of fat or other tissue

Pseudohypertrophy, or false enlargement, is an increase in the size of an organ due to infiltration of a tissue not normally found in that organ. It is commonly applied to enlargement of a muscle due to infiltration of fat or connective tissue, famously in Duchenne muscular dystrophy. This is in contrast with typical muscle hypertrophy, in which the muscle tissue itself increases in size. Because pseudohypertrophy is not a result of increased muscle tissue, the muscles look bigger but are actually atrophied and thus weaker. Pseudohypertrophy is typically the result of a disease, which can be a disease of muscle or a disease of the nerve supplying the muscle.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "NINDS Muscular Dystrophy Information Page". NINDS. March 4, 2016. Archived from the original on 30 July 2016. Retrieved 12 September 2016.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 "Muscular Dystrophy: Hope Through Research". NINDS. March 4, 2016. Archived from the original on 30 September 2016. Retrieved 12 September 2016.
  3. Gao, Q. Q.; McNally, E. M. (2011-01-17). Terjung, Ronald (ed.). Comprehensive Physiology. Vol. 5 (1 ed.). Wiley. pp. 1223–1239. doi:10.1002/cphy.c140048. ISBN   978-0-470-65071-4. PMC   4767260 . PMID   26140716.
  4. Gao, Quan Q.; McNally, Elizabeth M. (2015-06-24). "The Dystrophin Complex: Structure, Function, and Implications for Therapy". Comprehensive Physiology. 5 (3): 1223–1239. doi:10.1002/cphy.c140048. ISBN   9780470650714. PMC   4767260 . PMID   26140716.
  5. Muscular Dystrophy Clinical Presentation at eMedicine
  6. Choices, NHS. "Muscular dystrophy - Causes - NHS Choices". www.nhs.uk. Archived from the original on 2016-04-02. Retrieved 2016-04-10.
  7. Griffiths, Anthony JF; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, William M. (2000). Spontaneous mutations.[ page needed ]
  8. "NIH /How is muscular dystrophy diagnosed?". NIH.gov. NIH. 2015. Archived from the original on 7 April 2016. Retrieved 10 April 2016.
  9. Emery, Alan EH (2002-02-23). "The muscular dystrophies". The Lancet. 359 (9307): 687–695. doi:10.1016/S0140-6736(02)07815-7. ISSN   0140-6736. PMID   11879882. S2CID   31578361.
  10. 1 2 3 May 2006 report to Congress Archived 2014-04-05 at the Wayback Machine on Implementation of the MD CARE Act, as submitted by Department of Health and Human Service's National Institutes of Health
  11. Congenital Muscular Dystrophy~clinical at eMedicine
  12. 1 2 "Duchenne muscular dystrophy: MedlinePlus Medical Encyclopedia". medlineplus.gov. Archived from the original on 2017-04-05. Retrieved 2017-03-14.
  13. "Duchenne Muscular Dystrophy. What is muscular dystrophy? | Patient". Patient.info. 2016-04-15. Archived from the original on 2016-12-02. Retrieved 2017-03-14.
  14. Udd, Bjarne (2011). "Distal muscular dystrophies". Handbook of Clinical Neurology. Vol. 101. pp. 239–62. doi:10.1016/B978-0-08-045031-5.00016-5. ISBN   978-0-08-045031-5. PMID   21496636.
  15. "OMIM Entry - # 310300 - EMERY-DREIFUSS MUSCULAR DYSTROPHY 1, X-LINKED; EDMD1". Omim.org. Archived from the original on 2017-03-10. Retrieved 2017-03-14.
  16. "Emery-Dreifuss muscular dystrophy - Genetics Home Reference". Ghr.nlm.nih.gov. 2017-03-07. Archived from the original on 2017-03-12. Retrieved 2017-03-14.
  17. "facioscapulohumeral muscular dystrophy - Genetics Home Reference". Ghr.nlm.nih.gov. Archived from the original on 2017-03-24. Retrieved 2017-03-14.
  18. 1 2 3 Statland, JM; Tawil, R (December 2016). "Facioscapulohumeral Muscular Dystrophy". Continuum (Minneapolis, Minn.). 22 (6, Muscle and Neuromuscular Junction Disorders): 1916–1931. doi:10.1212/CON.0000000000000399. PMC   5898965 . PMID   27922500.
  19. "Facioscapulohumeral muscular dystrophy: MedlinePlus Medical Encyclopedia". Nlm.nih.gov. 2017-03-09. Archived from the original on 2016-07-04. Retrieved 2017-03-14.
  20. Jenkins, Simon P.R. (2005). Sports Science Handbook:I - Z. Brentwood, Essex: Multi-Science Publ. Co. p. 121. ISBN   978-0906522-37-0.
  21. Turner, C.; Hilton-Jones, D. (2010). "The myotonic dystrophies: diagnosis and management" (PDF). Journal of Neurology, Neurosurgery & Psychiatry. 81 (4): 358–67. doi: 10.1136/jnnp.2008.158261 . PMID   20176601. S2CID   2453622.
  22. Bird, T. D.; Adam, M. P.; Everman, D. B.; Mirzaa, G. M.; Pagon, R. A.; Wallace, S. E.; Bean LJH; Gripp, K. W.; Amemiya, A. (1993). "Myotonic Dystrophy Type 1". Myotonic Dystrophy Type 1 - GeneReviews® - NCBI Bookshelf. University of Washington, Seattle. PMID   20301344. Archived from the original on 2017-01-18. Retrieved 2017-03-14.{{cite book}}: |website= ignored (help)
  23. 1 2 "What are the treatments for muscular dystrophy?". NIH.gov. NIH. 2015. Archived from the original on 7 April 2016. Retrieved 10 April 2016.
  24. "Muscular Dystrophy-OrthoInfo - AAOS". orthoinfo.aaos.org. Archived from the original on 2016-04-12. Retrieved 2016-04-10.
  25. McAdam, Laura C.; Mayo, Amanda L.; Alman, Benjamin A.; Biggar, W. Douglas (2012). "The Canadian experience with long term deflazacort treatment in Duchenne muscular dystrophy". Acta Myologica. 31 (1): 16–20. PMC   3440807 . PMID   22655512.
  26. Verhaert, David; Richards, Kathryn; Rafael-Fortney, Jill A.; Raman, Subha V. (January 2011). "Cardiac Involvement in Patients With Muscular Dystrophies". Circulation: Cardiovascular Imaging. 4 (1): 67–76. doi:10.1161/CIRCIMAGING.110.960740. PMC   3057042 . PMID   21245364.
  27. Eddy, Linda L. (2013). Caring for Children with Special Healthcare Needs and Their Families: A Handbook for Healthcare Professionals. John Wiley & Sons. ISBN   978-1-118-51797-0.[ page needed ]
  28. Jansen, Merel; Van Alfen, Nens; Geurts, Alexander C. H.; De Groot, Imelda J. M. (2013). "Assisted Bicycle Training Delays Functional Deterioration in Boys with Duchenne Muscular Dystrophy". Neurorehabilitation and Neural Repair. 27 (9): 816–827. doi:10.1177/1545968313496326. PMID   23884013. S2CID   9990910.
  29. Lehman, R. M.; McCormack, G. L. (2001). "Neurogenic and Myopathic Dysfunction". In Pedretti, Lorraine Williams; Early, Mary Beth (eds.). Occupational Therapy: Practice Skills for Physical Dysfunction (5th ed.). Mosby. pp. 802–3. ISBN   978-0-323-00765-8.
  30. Laing, Nigel G; Davis, Mark R; Bayley, Klair; Fletcher, Sue; Wilton, Steve D (2011). "Molecular Diagnosis of Duchenne Muscular Dystrophy: Past, Present and Future in Relation to Implementing Therapies". The Clinical Biochemist Reviews. 32 (3): 129–134. PMC   3157948 . PMID   21912442.
  31. "Muscular Dystrophy: Hope Through Research". National Institute of Neurological Disorders and Stroke . 23 March 2020. Retrieved 7 April 2020.
  32. Berman, Ari (2011-09-02). "The End of the Jerry Lewis Telethon—It's About Time". The Nation. Retrieved 2017-03-14.
  33. H.R. 717--107th Congress (2001) Archived 2012-02-19 at the Wayback Machine : MD-CARE Act, GovTrack.us (database of federal legislation), (accessed Jul 29, 2007)
  34. Public Law 107-84 Archived 2012-11-07 at the Wayback Machine , PDF as retrieved from NIH website

Further reading