Spinal muscular atrophies | |
---|---|
Location of neurons affected in spinal muscular atrophies | |
Specialty | Neurology |
Symptoms | Loss of motor neurons resulting in muscle wasting |
Spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of rare debilitating disorders characterised by the degeneration of lower motor neurons (neuronal cells situated in the anterior horn of the spinal cord) and subsequent atrophy (wasting) of various muscle groups in the body. [1] While some SMAs lead to early infant death, other diseases of this group permit normal adult life with only mild weakness.
Based on the type of muscles affected, spinal muscular atrophies can be divided into:[ citation needed ]
When taking into account prevalence, spinal muscular atrophies are traditionally divided into:[ citation needed ]
A more detailed classification is based on the gene associated with the condition (where identified) and is presented in table below.
Group | Name Alternative names | OMIM | Gene | Locus | Mode of inheritance | Characteristics |
---|---|---|---|---|---|---|
SMA | Spinal muscular atrophy (SMA)
| 253300 253550 253400 271150 | SMN1 | 5q13.2 | Autosomal recessive | Affects primarily proximal muscles in people of all ages, progressive, relatively common |
XLSMA | X-linked spinal muscular atrophy type 1 (SMAX1)
| 313200 | NR3C4 | Xq12 | X-linked recessive | Affects primarily bulbar muscles as well as sensory nerves mainly in adult men, progressive |
X-linked spinal muscular atrophy type 2 (SMAX2)
| 301830 | UBA1 | Xp11.23 | X-linked recessive | Characterised by bone fractures, affects mainly distal muscles in newborn boys, usually fatal in infancy | |
X-linked spinal muscular atrophy type 3 (SMAX3)
| 300489 | ATP7A | Xq21.1 | X-linked recessive | Affects distal muscles of all extremities mainly in boys, slowly progressive | |
DSMA | Distal spinal muscular atrophy type 1 (DSMA1)
| 604320 | IGHMBP2 | 11q13.3 | Autosomal recessive | Affects mainly infant boys, similar to SMA type 1 but with diaphragmatic paralysis |
Distal spinal muscular atrophy type 2 (DSMA2)
| 605726 | SIGMAR1 | 19p13.3 | Autosomal recessive | Slowly progressive | |
Distal spinal muscular atrophy type 3 (DSMA3)
| 607088 | ? | 11q13.3 | Autosomal recessive | Slowly progressive | |
Distal spinal muscular atrophy type 4 (DSMA4) | 611067 | PLEKHG5 | 1p36.31 | Autosomal recessive | Slowly progressive, described only in one family | |
Distal spinal muscular atrophy type 5 (DSMA5) | 614881 | DNAJB2 | 2q35 | Autosomal recessive | Young adult onset, slowly progressive | |
Distal spinal muscular atrophy type VA (DSMAVA)
| 600794 | GARS | 7p14.3 | Autosomal dominant | With upper limb predominance; allelic and overlapping with CMT2D, phenotype overlapping with Silver syndrome | |
Distal spinal muscular atrophy type VB (DSMAVB)
| 614751 | REEP1 | 2p11 | Autosomal dominant | With upper limb predominance; allelic and overlapping with HSP-31 | |
Distal spinal muscular atrophy with calf predominance
| 615575 | FBXO38 | 5q32 | Autosomal dominant | Juvenile- or adult-onset, slowly progressive, affects both proximal and distal muscles, initially manifests with calf weakness which progresses to hands | |
Distal spinal muscular atrophy with vocal cord paralysis
| 158580 | SLC5A7 | 2q12.3 | Autosomal dominant | Adult-onset with vocal cord paralysis, very rare | |
Congenital distal spinal muscular atrophy
| 600175 | TRPV4 | 12q24.11 | Autosomal dominant | Affects primarily distal muscles of lower limbs, non-progressive, rare, allelic with SPSMA and CMT2C | |
Scapuloperoneal spinal muscular atrophy (SPSMA)
| 181405 | TRPV4 | 12q24.11 | Autosomal dominant or X-linked dominant | Affects muscles of lower limbs, non-progressive, rare, allelic with congenital distal spinal muscular atrophy and CMT2C | |
Autosomal dominant distal spinal muscular atrophy
| 158590 | HSPB8 | 12q24.23 | Autosomal dominant | Adult-onset. Allelic with Charcot–Marie–Tooth disease type 2L (CMT2L) | |
Autosomal dominant juvenile distal spinal muscular atrophy
| 182960 | ? | 7q34–q36 | Autosomal dominant | Juvenile-onset | |
Juvenile segmental spinal muscular atrophy (JSSMA) | 183020 | ? | 18q21.3 | ? | Juvenile-onset, progressive with stabilisation after 2–4 years, affects primarily hands, very rare | |
Finkel type proximal spinal muscular atrophy (SMAFK) | 182980 | VAPB | 20q13.32 | Autosomal dominant | Late-onset, affects proximal muscles in adults | |
James type infantile spinal muscular atrophy (SMAJI) | 619042 | GARS1 | 7p14.3 | Autosomal dominant | Infantile-onset hypotonia, slowly progressive, resulting in delayed motor milestones and loss of previous motor skills. Children never walk. Milder disorders caused by GARS1 mutations are CMT2D and HMN5A. | |
Jokela type spinal muscular atrophy (SMAJ) | 615048 | CHCHD10 | 22q11.2–q13.2 | Autosomal dominant | Late-onset, slowly progressive, affects both proximal and distal muscles in adults | |
Spinal muscular atrophy with lower extremity predominance 1 (SMALED1) | 158600 | DYNC1H1 | 14q32 | Autosomal dominant | Affects proximal muscles in infants | |
Spinal muscular atrophy with lower extremity predominance 2A (SMALED2A) | 615290 | BICD2 | 9q22.31 | Autosomal dominant | Early-onset, primarily affecting lower limbs, slowly progressive, non-life-limiting, very rare | |
Spinal muscular atrophy with lower extremity predominance 2B (SMALED2B) | 618291 | BICD2 | 9q22.31 | Autosomal dominant | Presents with hypotonia, contractures and respiratory involvement at birth, frequently fatal in early childhood, very rare | |
Spinal muscular atrophy with progressive myoclonic epilepsy (SMAPME) | 159950 | ASAH1 | 8p22 | Autosomal recessive | ||
Spinal muscular atrophy with congenital bone fractures 1 (SMABF1) | 616866 | TRIP4 | 15q22.31 | Autosomal recessive | Prenatal onset, characterised by severe muscle wasting, respiratory and feeding failure, and bone fractures at birth as in arthrogryposis multiplex congenita, usually fatal in infancy | |
Spinal muscular atrophy with congenital bone fractures 2 (SMABF2) | 616867 | ASCC1 | 10q22.1 | Autosomal recessive | Prenatal onset, characterised by severe muscle wasting, respiratory and feeding failure, and bone fractures at birth as in arthrogryposis multiplex congenita, usually fatal in infancy [2] [3] [4] | |
PCH | Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH)
| 607596 | VRK1 | 14q32 | Autosomal dominant | → see Pontocerebellar hypoplasia |
MMA | Juvenile asymmetric segmental spinal muscular atrophy (JASSMA)
| 602440 | ? | ? | ? | → see Monomelic amyotrophy |
PMA | Progressive spinal muscular atrophy
| ? | ? | ? | ? | → see Progressive muscular atrophy |
In all forms of SMA (with an exception of X-linked spinal muscular atrophy type 1), only motor neurons, located at the anterior horn of spinal cord, are affected; sensory neurons, which are located at the posterior horn of spinal cord, are not affected. By contrast, hereditary disorders that cause both weakness due to motor denervation along with sensory impairment due to sensory denervation are known as hereditary motor and sensory neuropathies (HMSN).[ citation needed ]
Motor neuron diseases or motor neurone diseases (MNDs) are a group of rare neurodegenerative disorders that selectively affect motor neurons, the cells which control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), progressive bulbar palsy (PBP), pseudobulbar palsy, progressive muscular atrophy (PMA), primary lateral sclerosis (PLS), spinal muscular atrophy (SMA) and monomelic amyotrophy (MMA), as well as some rarer variants resembling ALS.
Charcot–Marie–Tooth disease (CMT) is a hereditary motor and sensory neuropathy of the peripheral nervous system characterized by progressive loss of muscle tissue and touch sensation across various parts of the body. This disease is the most commonly inherited neurological disorder, affecting about one in 2,500 people. It is named after those who classically described it: the Frenchman Jean-Martin Charcot (1825–1893), his pupil Pierre Marie (1853–1940), and the Briton Howard Henry Tooth (1856–1925).
Spinal and bulbar muscular atrophy (SBMA), popularly known as Kennedy's disease, is a rare, adult-onset, X-linked recessive lower motor neuron disease caused by trinucleotide CAG repeat expansions in exon 1 of the androgen receptor (AR) gene, which results in both loss of AR function and toxic gain of function.
Progressive muscular atrophy (PMA), also called Duchenne–Aran disease and Duchenne–Aran muscular atrophy, is a disorder characterised by the degeneration of lower motor neurons, resulting in generalised, progressive loss of muscle function.
Spinal muscular atrophy (SMA) is a rare neuromuscular disorder that results in the loss of motor neurons and progressive muscle wasting. It is usually diagnosed in infancy or early childhood and if left untreated it is the most common genetic cause of infant death. It may also appear later in life and then have a milder course of the disease. The common feature is progressive weakness of voluntary muscles, with arm, leg and respiratory muscles being affected first. Associated problems may include poor head control, difficulties swallowing, scoliosis, and joint contractures.
Survival of motor neuron 1 (SMN1), also known as component of gems 1 or GEMIN1, is a gene that encodes the SMN protein in humans.
Hereditary motor and sensory neuropathies (HMSN) is a name sometimes given to a group of different neuropathies which are all characterized by their impact upon both afferent and efferent neural communication. HMSN are characterised by atypical neural development and degradation of neural tissue. The two common forms of HMSN are either hypertrophic demyelinated nerves or complete atrophy of neural tissue. Hypertrophic condition causes neural stiffness and a demyelination of nerves in the peripheral nervous system, and atrophy causes the breakdown of axons and neural cell bodies. In these disorders, a patient experiences progressive muscle atrophy and sensory neuropathy of the extremities.
Hereditary sensory and autonomic neuropathy (HSAN) or hereditary sensory neuropathy (HSN) is a condition used to describe any of the types of this disease which inhibit sensation.
X-linked spinal muscular atrophy type 2, also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in UBA1 gene and is passed in an X-linked recessive manner by carrier mothers to affected sons.
Distal spinal muscular atrophy type 1 (DSMA1), also known as spinal muscular atrophy with respiratory distress type 1 (SMARD1), is a rare neuromuscular disorder involving death of motor neurons in the spinal cord which leads to a generalised progressive atrophy of body muscles.
Survival of motor neuron 2 (SMN2) is a gene that encodes the SMN protein in humans.
Distal hereditary motor neuronopathies, sometimes also called distal hereditary motor neuropathies, are a genetically and clinically heterogeneous group of motor neuron diseases that result from genetic mutations in various genes and are characterized by degeneration and loss of motor neuron cells in the anterior horn of the spinal cord and subsequent muscle atrophy.
Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME), sometimes called Jankovic–Rivera syndrome, is a very rare neurodegenerative disease whose symptoms include slowly progressive muscle (atrophy), predominantly affecting proximal muscles, combined with denervation and myoclonic seizures. Only 12 known human families are described in scientific literature to have SMA-PME.
Congenital distal spinal muscular atrophy (cDSMA), also known as distal hereditary motor neuropathytype VIII (dHMN8), is a hereditary medical condition characterized by muscle wasting (atrophy), particularly of distal muscles in legs and hands, and by early-onset contractures of the hip, knee, and ankle. Affected individuals often have shorter lower limbs relative to the trunk and upper limbs. The condition is a result of a loss of anterior horn cells localized to lumbar and cervical regions of the spinal cord early in infancy, which in turn is caused by a mutation of the TRPV4 gene. The disorder is inherited in an autosomal dominant manner. Arm muscle and function, as well as cardiac and respiratory functions are typically well preserved.
Hereditary motor and sensory neuropathy with proximal dominance (HMSN-P) is an autosomal dominant neurodegenerative disorder that is defined by extensive involuntary and spontaneous muscle contractions, asthenia, and atrophy with distal sensory involvement following. The disease starts presenting typically in the 40s and is succeeded by a slow and continuous onslaught. Muscle spasms and muscle contractions large in number are noted, especially in the earliest stages. The presentation of HMSN-P is quite similar to amyotrophic lateral sclerosis and has common neuropathological findings. Sensory loss happens as the disease progresses, but the amount of sensation lost varies from case to case. There have been other symptoms of HMSN-P reported such as urinary disturbances and a dry cough.
Distal spinal muscular atrophy type 2 (DSMA2), also known as Jerash type distal hereditary motor neuropathy (HMNJ), is a very rare childhood-onset genetic disorder characterised by progressive muscle wasting affecting lower and subsequently upper limbs. The disorder has been described in Arab inhabitants of Jerash region in Jordan as well as in a Chinese family.
Hereditary sensory and autonomic neuropathy type I or hereditary sensory neuropathy type I is a group of autosomal dominant inherited neurological diseases that affect the peripheral nervous system particularly on the sensory and autonomic functions. The hallmark of the disease is the marked loss of pain and temperature sensation in the distal parts of the lower limbs. The autonomic disturbances, if present, manifest as sweating abnormalities.
Monomelic amyotrophy (MMA) is a rare motor neuron disease first described in 1959 in Japan. Its symptoms usually appear about two years after adolescent growth spurt and is significantly more common in males, with an average age of onset between 15 and 25 years. MMA is reported most frequently in Asia but has a global distribution. It is typically marked by insidious onset of muscle atrophy of an upper limb, which plateaus after two to five years from which it neither improves nor worsens. There is no pain or sensory loss associated with MMA. MMA is not believed to be hereditary.
Distal hereditary motor neuropathy type V is a particular type of neuropathic disorder. In general, distal hereditary motor neuropathies affect the axons of distal motor neurons and are characterized by progressive weakness and atrophy of muscles of the extremities. It is common for them to be called "spinal forms of Charcot-Marie-Tooth disease (CMT)", because the diseases are closely related in symptoms and genetic cause. The diagnostic difference in these diseases is the presence of sensory loss in the extremities. There are seven classifications of dHMNs, each defined by patterns of inheritance, age of onset, severity, and muscle groups involved. Type V is a disorder characterized by autosomal dominance, weakness of the upper limbs that is progressive and symmetrical, and atrophy of the small muscles of the hands.