Neurodegeneration with brain iron accumulation

Last updated
Neurodegeneration with brain iron accumulation
Other namesNBIA
Specialty Neurology   OOjs UI icon edit-ltr-progressive.svg

Neurodegeneration with brain iron accumulation is a heterogenous group of inherited neurodegenerative diseases, still under research, in which iron accumulates in the basal ganglia, either resulting in progressive dystonia, parkinsonism, spasticity, optic atrophy, retinal degeneration, neuropsychiatric, or diverse neurologic abnormalities. [1] Some of the NBIA disorders have also been associated with several genes in synapse and lipid metabolism related pathways. [2] NBIA is not one disease but an entire group of disorders, characterized by an accumulation of brain iron, sometimes in the presence of axonal spheroids in the central nervous system. [3]

Contents

Iron accumulation can occur anywhere in the brain, with accumulation typically occurring in globus pallidus, substantia nigra, pars reticula, striatum and cerebellar dentate nuclei. [4] Symptoms can include various movement disorders, neuropsychiatric issues, seizures, visual disturbances, and cognitive decline, usually in different combinations. [4] Ten to fifteen genetic NBIA disorders involving various cell processes have been identified: iron metabolism, coenzyme A biosynthesis, phospholipid metabolism, ceramide metabolism, lysosomal disorders, as well as mutations in genes with unknown functions. [5] [4] Onset can occur at different ages, from early childhood to late adulthood. [4]

As of 2021 there were no curative treatments for any of the NBIA disorders, though several medications have been subject to clinical trial including the iron chelator deferiprone. [5]

Variants

Overview of monogenic NBIA disorders [5] [6] [7]
NBIA variant Gene Inheritance
Pantothenate kinase-associated neurodegeneration (PKAN) [8] PANK2 autosomal recessive
PLA2G6-associated neurodegeneration (PLAN) [9] PLA2G6 autosomal recessive
Mitochondrial membrane protein-associated neurodegeneration (MPAN) [10] C19orf12autosomal recessive or dominant
Beta-propeller protein-associated neurodegeneration (BPAN) [11] WDR45 X-linked dominant (mostly de novo mutations)
Fatty acid hydroxylase-associated neurodegeneration (FAHN) [12] FA2H autosomal recessive
Kufor–Rakeb syndrome ATP13A2 autosomal recessive
Neuroferritinopathy FTL autosomal dominant
Aceruloplasminemia CP autosomal recessive
Woodhouse–Sakati syndrome DCAF17 autosomal recessive
COASY protein-associated neurodegeneration (CoPAN) COASY autosomal recessive
NBIA7 [13] REPS1 autosomal recessive
NBIA8 [13] CRAT autosomal recessive

Diagnosis

DaT scans, transcranial Doppler sonography (TCD), PET scans, and, in some cases, magnetic resonance imaging (MRI) (type of scans depending on the symptoms) [14] are used to distinguish between the different forms of NBIA due to the accumulation of iron in different areas of the brain. [15] Patients typically fall into two different categories: (1) early onset, rapid progression or (2) late onset, slow progression. [15] The first type is considered to be the classic presentation, while the second type is thought to be a more atypical presentation. Phenotypes of the different disorders appear to be dependent on age, i.e. amount of iron accumulation and cognitive abilities. [16]

Treatments

Effective disease-modifying treatments have not yet been found for any of the NBIA disorders. [5] Treatment is supportive and focused on improving symptoms: Dystonia is a common debilitating symptom and can be managed with oral medications, and sometimes with deep-brain electrical stimulation, therapy support for walking, eating, and manual tasks is essential. Later, in many of the diseases, slowing and stopping of movement (known as parkinsonism) can become common. Removal of iron, using medications known as iron chelators, has been tested in clinical trial but was not definitively shown to be effective. [17]

Related Research Articles

<span class="mw-page-title-main">Neurofibromatosis</span> Medical condition

Neurofibromatosis (NF) is a group of three conditions in which tumors grow in the nervous system. The three types are neurofibromatosis type I (NF1), neurofibromatosis type II (NF2), and schwannomatosis. In NF1 symptoms include light brown spots on the skin, freckles in the armpit and groin, small bumps within nerves, and scoliosis. In NF2, there may be hearing loss, cataracts at a young age, balance problems, flesh colored skin flaps, and muscle wasting. In schwannomatosis there may be pain either in one location or in wide areas of the body. The tumors in NF are generally non-cancerous.

<span class="mw-page-title-main">Methylmalonic acidemia</span> Medical condition

Methylmalonic acidemia, also called methylmalonic aciduria, is an autosomal recessive metabolic disorder that disrupts normal amino acid metabolism. It is a classical type of organic acidemia. The result of this condition is the inability to properly digest specific fats and proteins, which in turn leads to a buildup of a toxic level of methylmalonic acid in the blood.

<span class="mw-page-title-main">Congenital insensitivity to pain with anhidrosis</span> Medical condition

Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive disorder of the nervous system which prevents the feeling of pain or temperature, and prevents a person from sweating. Cognitive disorders are commonly coincident. CIPA is the fourth type of hereditary sensory and autonomic neuropathy (HSAN), and is also known as HSAN IV.

Pantothenate kinase-associated neurodegeneration (PKAN), formerly called Hallervorden–Spatz syndrome, is a genetic degenerative disease of the brain that can lead to parkinsonism, dystonia, dementia, and ultimately death. Neurodegeneration in PKAN is accompanied by an excess of iron that progressively builds up in the brain.

<span class="mw-page-title-main">Aceruloplasminemia</span> Medical condition

Aceruloplasminemia is a rare autosomal recessive disorder in which the liver can not synthesize the protein ceruloplasmin properly, which is needed to transport copper around the blood. Copper deficiency in the brain results in neurological problems that generally appear in adulthood and worsen over time. .

<span class="mw-page-title-main">Peroxisomal disorder</span> Medical condition

Peroxisomal disorders represent a class of medical conditions caused by defects in peroxisome functions. This may be due to defects in single enzymes important for peroxisome function or in peroxins, proteins encoded by PEX genes that are critical for normal peroxisome assembly and biogenesis.

<span class="mw-page-title-main">Rhizomelic chondrodysplasia punctata</span> Recessive genetic condition

Rhizomelic chondrodysplasia punctata is a rare developmental brain disorder characterized by abnormally short arms and legs (rhizomelia), seizures, recurrent respiratory tract infections and congenital cataracts.

<span class="mw-page-title-main">Branchio-oto-renal syndrome</span> Medical condition

Branchio-oto-renal syndrome (BOR) is an autosomal dominant genetic disorder involving the kidneys, ears, and neck. It is also known as Melnick-Fraser syndrome.

<span class="mw-page-title-main">Prelamin-A/C</span> Filament protein

Prelamin-A/C, or lamin A/C is a protein that in humans is encoded by the LMNA gene. Lamin A/C belongs to the lamin family of proteins.

Infantile Refsum disease (IRD) is a rare autosomal recessive congenital peroxisomal biogenesis disorder within the Zellweger spectrum. These are disorders of the peroxisomes that are clinically similar to Zellweger syndrome and associated with mutations in the PEX family of genes. IRD is associated with deficient phytanic acid catabolism, as is adult Refsum disease, but they are different disorders that should not be confused.

<span class="mw-page-title-main">PANK2 (gene)</span> Protein-coding gene in the species Homo sapiens

Pantothenate kinase 2, mitochondrial is an enzyme that in humans is encoded by the PANK2 gene.

<span class="mw-page-title-main">WDR45</span> Protein-coding gene in humans

WD repeat domain phosphoinositide-interacting protein 4 (WIPI-4) is a protein that in humans is encoded by the WDR45 gene. Mutations in this gene cause a distinct form of Neurodegeneration with brain iron accumulation (NBIA) called Beta-propeller protein-associated neurodegeneration (BPAN).

<span class="mw-page-title-main">Neuroferritinopathy</span> Medical condition

Neuroferritinopathy is a genetic neurodegenerative disorder characterized by the accumulation of iron in the basal ganglia, cerebellum, and motor cortex of the human brain. Symptoms, which are extrapyramidal in nature, progress slowly and generally do not become apparent until adulthood. These symptoms include chorea, dystonia, and cognitive deficits which worsen with age.

<span class="mw-page-title-main">Kufor–Rakeb syndrome</span> Medical condition

Kufor–Rakeb syndrome (KRS) is an autosomal recessive disorder of juvenile onset also known as Parkinson disease-9 (PARK9). It is named after Kufr Rakeb in Irbid, Jordan. Kufor–Rakeb syndrome was first identified in this region in Jordan with a Jordanian couple's 5 children who had rigidity, mask-like face, and bradykinesia. The disease was first described in 1994 by Najim Al-Din et al. The OMIM number is 606693.

Multisystem proteinopathy (MSP) is a dominantly inherited, pleiotropic, degenerative disorder of humans that can affect muscle, bone, and/or the central nervous system. MSP can manifest clinically as classical amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), inclusion body myopathy (IBM), Paget's disease of bone (PDB), or as a combination of these disorders. Historically, several different names have been used to describe MSP, most commonly "inclusion body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD)" or "inclusion body myopathy with frontotemporal dementia, Paget's disease of bone, and amyotrophic lateral sclerosis (IBMPFD/ALS)." However, IBMPFD and IBMPFD/ALS are now considered outdated classifications and are more properly referred to as MSP, as the disease is clinically heterogeneous and its phenotypic spectrum extends beyond IBM, PDB, FTD, and ALS to include motor neuron disease, Parkinson's disease features, and ataxia features. Although MSP is rare, growing interest in this syndrome derives from the molecular insights the condition provides into the etiological relationship between common age-related degenerative diseases of muscle, bone, and brain.

<span class="mw-page-title-main">CCDC40 (gene)</span> Protein-coding gene in humans

CCDC40 is the gene in humans that encodes the protein named coiled-coil domain containing 40.

<span class="mw-page-title-main">NGLY1 deficiency</span> Medical condition

NGLY1 deficiency is a very rare genetic disorder caused by biallelic pathogenic variants in NGLY1. It is an autosomal recessive disorder. Errors in deglycosylation are responsible for the symptoms of this condition. Clinically, most affected individuals display developmental delay, lack of tears, elevated liver transaminases and a movement disorder. NGLY1 deficiency is difficult to diagnose, and most individuals have been identified by exome sequencing.

<span class="mw-page-title-main">PMM2 deficiency</span> Medical condition

PMM2 deficiency or PMM2-CDG, previously CDG-Ia, is a very rare genetic disorder caused by mutations in PMM2. It is an autosomal recessive disease that is the most common type of congenital disorder of glycosylation or CDG. PMM2-CDG is the most common of a growing family of more than 130 extremely rare inherited metabolic disorders. Only about 800 children and adults have been reported worldwide.

Nasu–Hakola disease also known as polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy is a rare disease characterised by early-onset dementia and multifocal bone cysts. It is caused by autosomal recessive loss of function mutations in either the TREM2 or TYROBP gene that are found most frequently in the Finnish and Japanese populations.

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a genetic neurodegenerative disease that causes dystonia, parkinsonism, and iron accumulation in the brain. It is caused by mutations to the gene C19orf12, which has unknown function. This was originally discovered as an autosomal recessive disorder, caused by individuals having two mutations to the gene C19orf12, but autosomal dominant disease caused by a single mutation in the same gene has also been rarely described. Due to the common features of neurodegeneration, brain iron accumulation, and movement disorder it is classified as a neurodegeneration with brain iron accumulation (NBIA) disorder and another name for the condition is neurodegeneration with brain iron accumulation 4 (NBIA4).

References

  1. Ward, Roberta J.; Chrichton, Robert R. (2019). "Chapter 4. Ironing out the Brain". In Sigel, Astrid; Freisinger, Eva; Sigel, Roland K. O.; Carver, Peggy L. (eds.). Essential Metals in Medicine:Therapeutic Use and Toxicity of Metal Ions in the Clinic. Vol. 19. Berlin: de Gruyter GmbH. pp. 87–122. doi:10.1515/9783110527872-010. ISBN   978-3-11-052691-2. PMID   30855105.{{cite book}}: |journal= ignored (help)
  2. Bettencourt C, Forabosco P, Wiethoff S, Heidari M, Johnstone DM, Botía JA, Collingwood JF, Hardy J, Milward EA, Ryten M, Houlden H (March 2016). "Gene co-expression networks shed light into diseases of brain iron accumulation". primary. Neurobiology of Disease. 87: 59–68. doi:10.1016/j.nbd.2015.12.004. PMC   4731015 . PMID   26707700.
  3. Gregory A, Polster BJ, Hayflick SJ (February 2009). "Clinical and genetic delineation of neurodegeneration with brain iron accumulation". review. Journal of Medical Genetics. 46 (2): 73–80. doi:10.1136/jmg.2008.061929. PMC   2675558 . PMID   18981035.
  4. 1 2 3 4 Dusek P, Schneider SA (August 2012). "Neurodegeneration with brain iron accumulation". review. Current Opinion in Neurology. 25 (4): 499–506. doi:10.1097/wco.0b013e3283550cac. PMID   22691760.
  5. 1 2 3 4 Spaull, Robert V. V.; Soo, Audrey K. S.; Hogarth, Penelope; Hayflick, Susan J.; Kurian, Manju A. (24 November 2021). "Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation". Tremor and Other Hyperkinetic Movements. 11 (1): 51. doi: 10.5334/tohm.661 . PMC   8641530 . PMID   34909266.
  6. Gregory A, Hayflick S (28 February 2013). Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (eds.). Neurodegeneration with Brain Iron Accumulation Disorders Overview. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle. PMID   23447832.
  7. Hogarth P (January 2015). "Neurodegeneration with brain iron accumulation: diagnosis and management". Journal of Movement Disorders. 8 (1): 1–13. doi:10.14802/jmd.14034. PMC   4298713 . PMID   25614780.
  8. Gregory A, Hayflick SJ (2003). Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (eds.). "Pantothenate Kinase-Associated Neurodegeneration". GeneReviews [Internet]. PMID   20301663.
  9. Gregory A, Kurian MA, Maher ER, Hogarth P, Hayflick SJ (2008). Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (eds.). "PLA2G6-Associated Neurodegeneration". GeneReviews [Internet]. PMID   20301718.
  10. Gregory A, Hartig M, Prokisch H, Kmiec T, Hogarth P, Hayflick SJ (2014). Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (eds.). "Mitochondrial Membrane Protein-Associated Neurodegeneration". GeneReviews [Internet]. PMID   24575447.
  11. Gregory A, Kurian MA, Haack T, Hayflick SJ, Hogarth P (16 Feb 2017). Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (eds.). "Beta-Propeller Protein-Associated Neurodegeneration". GeneReviews [Internet]. PMID   28211668.
  12. Kruer MC, Gregory A, Hayflick SJ (28 Jun 2011). Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (eds.). "Fatty Acid Hydroxylase-Associated Neurodegeneration". GeneReviews [Internet]. PMID   21735565.
  13. 1 2 Drecourt A, Babdor J, Dussiot M, Petit F, Goudin N, Garfa-Traoré M, et al. (February 2018). "Impaired Transferrin Receptor Palmitoylation and Recycling in Neurodegeneration with Brain Iron Accumulation". primary. American Journal of Human Genetics. 102 (2): 266–277. doi:10.1016/j.ajhg.2018.01.003. PMC   5985451 . PMID   29395073.
  14. Brüggemann N. et al.: Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol. 2010 Nov;67(11):1357-63. doi: 10.1001/archneurol.2010.281.
  15. 1 2 Hayflick SJ, Hartman M, Coryell J, Gitschier J, Rowley H (2006-06-01). "Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations". primary. American Journal of Neuroradiology . 27 (6): 1230–3. PMC   2099458 . PMID   16775270.
  16. Schneider SA, Bhatia KP (June 2012). "Syndromes of neurodegeneration with brain iron accumulation". review. Seminars in Pediatric Neurology. 19 (2): 57–66. doi:10.1016/j.spen.2012.03.005. PMID   22704258.
  17. Klopstock, Thomas; Tricta, Fernando; Neumayr, Lynne; Karin, Ivan; Zorzi, Giovanna; et al. (July 2019). "Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study". The Lancet Neurology. 18 (7): 631–642. doi:10.1016/S1474-4422(19)30142-5. PMID   31202468. S2CID   186245765.