Distal hereditary motor neuronopathies (distal HMN, dHMN), sometimes also called distal hereditary motor neuropathies, are a genetically and clinically heterogeneous group of motor neuron diseases that result from genetic mutations in various genes and are characterized by degeneration and loss of motor neuron cells in the anterior horn of the spinal cord and subsequent muscle atrophy.[ citation needed ]
Although they can hardly be distinguished from hereditary motor and sensory neuropathies on the clinical level, dHMNs are considered a separate class of disorders.[ citation needed ]
Another common system of classification groups many of DHMNs under the heading of spinal muscular atrophies.[ citation needed ]
In 1993, A. E. Hardnig proposed to classify hereditary motor neuropathies into seven groups based on age at onset, mode of inheritance, and presence of additional features. This initial classification has since been widely adopted and expanded and currently looks as follows: [1] [2]
Type | OMIM | Gene | Locus | Inheritance | Common names and characteristics |
---|---|---|---|---|---|
DHMN1 | 182960 | ? | 7q34–q36 | Autosomal dominant | Autosomal dominant juvenile distal spinal muscular atrophy
|
DHMN2A | 158590 | HSPB8 | 12q24.23 | Autosomal dominant | Autosomal dominant distal spinal muscular atrophy
|
DHMN2B | 608634 | HSPB1 | 7q11.23 | Autosomal dominant | Adult onset |
DHMN2C | 613376 | HSPB3 | 5q11.2 | Autosomal dominant | |
DHMN2D | 615575 | FBXO38 | 5q32 | Autosomal dominant | Distal spinal muscular atrophy with calf predominance
|
DHMN3 DHMN4 | 607088 | ? | 11q13 | Autosomal recessive | Distal spinal muscular atrophy type 3
|
DHMN5A | 600794 | GARS | 7p14.3 | Autosomal dominant | Distal spinal muscular atrophy type VA |
DHMN5B | 614751 | REEP1 | 2p11.2 | Autosomal dominant | Distal spinal muscular atrophy type VB
|
DHMN6 | 604320 | IGHMBP2 | 11q13.3 | Autosomal recessive | Distal spinal muscular atrophy type 1 (DSMA1); spinal muscular atrophy with respiratory distress type 1 (SMARD1)
|
DHMN7A | 158580 | SLC5A7 | 2q12.3 | Autosomal dominant | Spinal muscular atrophy with vocal cord paralysis; Harper–Young myopathy
|
DHMN7B | 607641 | DCTN1 | 2p13.1 | Autosomal dominant | Adult onset with vocal cord paralysis and facial weakness |
DHMN8 | 600175 | TRPV4 | 12q24.11 | Autosomal dominant | Congenital distal spinal muscular atrophy
|
DHMNJ | 605726 | SIGMAR1 | 9p13.3 | Autosomal recessive | Distal spinal muscular atrophy type 2; Jerash type spinal muscular atrophy
|
Note: Acronym HMN is also used interchangeably with DHMN.
Motor neuron diseases or motor neurone diseases (MNDs) are a group of rare neurodegenerative disorders that selectively affect motor neurons, the cells which control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), progressive bulbar palsy (PBP), pseudobulbar palsy, progressive muscular atrophy (PMA), primary lateral sclerosis (PLS), spinal muscular atrophy (SMA) and monomelic amyotrophy (MMA), as well as some rarer variants resembling ALS.
Charcot–Marie–Tooth disease (CMT) is a hereditary motor and sensory neuropathy of the peripheral nervous system characterized by progressive loss of muscle tissue and touch sensation across various parts of the body. This disease is the most commonly inherited neurological disorder, affecting about one in 2,500 people. It is named after those who classically described it: the Frenchman Jean-Martin Charcot (1825–1893), his pupil Pierre Marie (1853–1940), and the Briton Howard Henry Tooth (1856–1925).
Spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of rare debilitating disorders characterised by the degeneration of lower motor neurons and subsequent atrophy (wasting) of various muscle groups in the body. While some SMAs lead to early infant death, other diseases of this group permit normal adult life with only mild weakness.
Spinal and bulbar muscular atrophy (SBMA), popularly known as Kennedy's disease, is a rare, adult-onset, X-linked recessive lower motor neuron disease caused by trinucleotide CAG repeat expansions in exon 1 of the androgen receptor (AR) gene, which results in both loss of AR function and toxic gain of function.
Progressive muscular atrophy (PMA), also called Duchenne–Aran disease and Duchenne–Aran muscular atrophy, is a disorder characterised by the degeneration of lower motor neurons, resulting in generalised, progressive loss of muscle function.
Spinal muscular atrophy (SMA) is a rare neuromuscular disorder that results in the loss of motor neurons and progressive muscle wasting. It is usually diagnosed in infancy or early childhood and if left untreated it is the most common genetic cause of infant death. It may also appear later in life and then have a milder course of the disease. The common feature is progressive weakness of voluntary muscles, with arm, leg and respiratory muscles being affected first. Associated problems may include poor head control, difficulties swallowing, scoliosis, and joint contractures.
Heat shock protein beta-8 is a protein that in humans is encoded by the HSPB8 gene.
Glycine—tRNA ligase also known as glycyl–tRNA synthetase is an enzyme that in humans is encoded by the GARS1 gene.
Hereditary motor and sensory neuropathies (HMSN) is a name sometimes given to a group of different neuropathies which are all characterized by their impact upon both afferent and efferent neural communication. HMSN are characterised by atypical neural development and degradation of neural tissue. The two common forms of HMSN are either hypertrophic demyelinated nerves or complete atrophy of neural tissue. Hypertrophic condition causes neural stiffness and a demyelination of nerves in the peripheral nervous system, and atrophy causes the breakdown of axons and neural cell bodies. In these disorders, a patient experiences progressive muscle atrophy and sensory neuropathy of the extremities.
X-linked spinal muscular atrophy type 2, also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in UBA1 gene and is passed in an X-linked recessive manner by carrier mothers to affected sons.
Distal spinal muscular atrophy type 1 (DSMA1), also known as spinal muscular atrophy with respiratory distress type 1 (SMARD1), is a rare neuromuscular disorder involving death of motor neurons in the spinal cord which leads to a generalised progressive atrophy of body muscles.
Survival of motor neuron 2 (SMN2) is a gene that encodes the SMN protein in humans.
Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME), sometimes called Jankovic–Rivera syndrome, is a very rare neurodegenerative disease whose symptoms include slowly progressive muscle (atrophy), predominantly affecting proximal muscles, combined with denervation and myoclonic seizures. Only 12 known human families are described in scientific literature to have SMA-PME.
Congenital distal spinal muscular atrophy (cDSMA), also known as distal hereditary motor neuropathytype VIII (dHMN8), is a hereditary medical condition characterized by muscle wasting (atrophy), particularly of distal muscles in legs and hands, and by early-onset contractures of the hip, knee, and ankle. Affected individuals often have shorter lower limbs relative to the trunk and upper limbs. The condition is a result of a loss of anterior horn cells localized to lumbar and cervical regions of the spinal cord early in infancy, which in turn is caused by a mutation of the TRPV4 gene. The disorder is inherited in an autosomal dominant manner. Arm muscle and function, as well as cardiac and respiratory functions are typically well preserved.
Hereditary motor and sensory neuropathy with proximal dominance (HMSN-P) is an autosomal dominant neurodegenerative disorder that is defined by extensive involuntary and spontaneous muscle contractions, asthenia, and atrophy with distal sensory involvement following. The disease starts presenting typically in the 40s and is succeeded by a slow and continuous onslaught. Muscle spasms and muscle contractions large in number are noted, especially in the earliest stages. The presentation of HMSN-P is quite similar to amyotrophic lateral sclerosis and has common neuropathological findings. Sensory loss happens as the disease progresses, but the amount of sensation lost varies from case to case. There have been other symptoms of HMSN-P reported such as urinary disturbances and a dry cough.
Distal spinal muscular atrophy type 2 (DSMA2), also known as Jerash type distal hereditary motor neuropathy (HMNJ), is a very rare childhood-onset genetic disorder characterised by progressive muscle wasting affecting lower and subsequently upper limbs. The disorder has been described in Arab inhabitants of Jerash region in Jordan as well as in a Chinese family.
Hereditary sensory and autonomic neuropathy type I or hereditary sensory neuropathy type I is a group of autosomal dominant inherited neurological diseases that affect the peripheral nervous system particularly on the sensory and autonomic functions. The hallmark of the disease is the marked loss of pain and temperature sensation in the distal parts of the lower limbs. The autonomic disturbances, if present, manifest as sweating abnormalities.
Monomelic amyotrophy (MMA) is a rare motor neuron disease first described in 1959 in Japan. Its symptoms usually appear about two years after adolescent growth spurt and is significantly more common in males, with an average age of onset between 15 and 25 years. MMA is reported most frequently in Asia but has a global distribution. It is typically marked by insidious onset of muscle atrophy of an upper limb, which plateaus after two to five years from which it neither improves nor worsens. There is no pain or sensory loss associated with MMA. MMA is not believed to be hereditary.
Distal hereditary motor neuropathy type V is a particular type of neuropathic disorder. In general, distal hereditary motor neuropathies affect the axons of distal motor neurons and are characterized by progressive weakness and atrophy of muscles of the extremities. It is common for them to be called "spinal forms of Charcot-Marie-Tooth disease (CMT)", because the diseases are closely related in symptoms and genetic cause. The diagnostic difference in these diseases is the presence of sensory loss in the extremities. There are seven classifications of dHMNs, each defined by patterns of inheritance, age of onset, severity, and muscle groups involved. Type V is a disorder characterized by autosomal dominance, weakness of the upper limbs that is progressive and symmetrical, and atrophy of the small muscles of the hands.