Nerve compression syndrome | |
---|---|
Other names | Entrapment neuropathy |
Radial nerve compression is an example of nerve compression syndrome | |
Specialty | Neurology, neurosurgery, orthopedic surgery, plastic surgery, Gynaecology |
Symptoms | pain, tingling, dull ache, numbness, shooting pain, muscle weakness |
Diagnostic method | clinical exam, diagnostic blocks, imaging, and electrophysiology testing |
Nerve compression syndrome, or compression neuropathy, or nerve entrapment syndrome, is a medical condition caused by chronic, direct pressure on a peripheral nerve. [1] It is known colloquially as a trapped nerve, though this may also refer to nerve root compression (by a herniated disc, for example). Its symptoms include pain, tingling, numbness and muscle weakness. The symptoms affect just one particular part of the body, depending on which nerve is affected. The diagnosis is largely clinical and can be confirmed with diagnostic nerve blocks. Occasionally imaging and electrophysiology studies aid in the diagnosis. Timely diagnosis is important as untreated chronic nerve compression may cause permanent damage. A surgical nerve decompression can relieve pressure on the nerve but cannot always reverse the physiological changes that occurred before treatment. Nerve injury by a single episode of physical trauma is in one sense an acute compression neuropathy but is not usually included under this heading, as chronic compression takes a unique pathophysiological course.
Symptoms vary depending on whether the affected nerve contains motor and/or sensory fibers. Sensory nerve entrapment presents with paresthesias. These paresthesias may be painful, such as shooting pain, burning, or a dull ache. They may also be pain-free, such as numbness or tingling. Motor nerve entrapment may present with muscle weakness or paralysis for voluntary movements of the innervated muscles. Entrapment of certain pelvic nerves can cause incontinence and/or sexual dysfunction. [2] Positive sensory symptoms are usually the earliest to occur, particularly tingling and neuropathic pain, followed or accompanied by reduced sensation or complete numbness. Muscle weakness and muscle atrophy may only be present if the entrapped nerve has motor fibers (some nerves are only sensory). Weakness and atrophy is a much less common symptom and usually associated with later stages of nerve entrapment if it is present at all. [3] [4] [5] [6]
The distribution of symptoms is highly specific to the nerve entrapped and the way the nerve courses and branches beyond the entrapment point. The sciatic and pudendal nerves, for example, have documented, common anatomic variations. [7] [8] For a given entrapment neuropathy, symptoms will only present in the areas innervated by that nerve and distal to the entrapment point. The symptom distribution is highly dependent on a patient's neuroanatomy, which may mean that two patients can present differently despite having the same nerve entrapped. [9] [10]
The timing/duration of symptoms may be continuous, intermittent, and/or positional. This is dependent on the underlying cause of entrapment and the specific nerves involved. For example, pain while sitting is associated with inferior cluneal nerve entrapment, pudendal nerve entrapment, and anococcyeal nerve entrapment. [11] [12] [13]
Certain occupations, postures, and activities can put prolonged pressure on a nerve. The term "Saturday night palsy" is used for a radial nerve injury caused by prolonged compression of the nerve at the spiral groove. The origin of the term is due to the association of the condition with a night spent in alcoholic stupor with the arm draped over a chair or bench. Mechanical compression of the radial nerve in the spiral groove can also occur as a result of the continuous use of crutches or prolonged kneeling in a "shooting" position. [14] The so-called "cyclist palsy" is caused by prolonged grip pressures on handlebars, and has been postulated to be an entrapment neuropathy of the ulnar nerve in the Guyon canal of the wrist. [15] Occupational exposure to forceful handgrip work and vibration, such as construction workers, increased the risk for surgical treatment of radial nerve entrapment. [16] Posture induced common peroneal nerve (CPN) palsy is usually produced during the prolonged squatting or habitual leg crossing while seated, especially in Asian culture and is manifested by the onset of foot drop. [17] One sport-related cause of lateral femoral cutaneous nerve entrapment is seen in scuba divers where the weight belt worn around the waist directly compresses the nerve. [18] Prolonged periods of cycling can be associated with pudendal nerve entrapment, as there is often direct compression on the pudendal nerve between the nose of the bicycle seat and pubic bone. [19] Tight fitting goggles can put pressure on the supraorbital nerve, also known as "swimmer's headache". [20] Tight fitting handcuffs can compress the superficial branch of the radial nerve, known by several names such as Cheiralgia paresthetica, Wartenberg's syndrome, and handcuff neuropathy. [21] The use of a thick wallet in the rear pocket can compress the sciatic nerve when sitting. [22]
Nerve compression can be secondary to other medical conditions. Entrapment neuropathies are remarkably common in diabetes. [23] A well defined lesion such as a tumor, hypertrophic muscle, cyst, hernia, hematoma, etc. can increase pressure on surrounding soft tissue, including nerves. Alternatively, there may be expansion of the tissues around a nerve in a space where there is little room for this to occur, as is often the case in carpal tunnel syndrome. This may be due to weight gain or peripheral oedema (especially in pregnancy), or to a specific condition such as acromegaly, hypothyroidism or scleroderma and psoriasis. Abnormal biomechanics can be associated with nerve compression. Ischiofemoral impingement (where the femur and ischium come too close together) can squeeze the sciatic nerve. [18] [24]
Entrapment can be caused by injuries. Surgical injuries can cause entrapment by the development of scar tissue around the nerve as well as the decreased ability of the nerve to glide, increasing strain during movements. Radial nerve entrapment is seen after fracture manipulation when the nerve is unknowingly entrapped between bone and an installed plate, compressed by a bone fragment or if excessive nailing of the bone occurs. [25] Accidents are also associated with nerve entrapment as swelling puts pressure on the nerve and the development of scar tissue nearby may provide a hard surface for the nerve to be squeezed against, such as pudendal neuralgia in cyclists where repetitive trauma creates fibrotic entrapment of the pudendal nerve. [26]
Surgical and anatomic research has shed some light on the proximate causes of entrapment. There are anatomical regions in which segments of peripheral nerves are vulnerable or predisposed to become trapped and suffer from chronic compression. Neural compression occurs especially in osteofibrous tunnels but may also occur at points of passage of the peripheral nerve through the muscles or near a band of fibrous tissue. [27] In sciatic nerve decompression study, compromising structures were piriformis muscle, fibrovascular bundles, and adhesion with scar tissues. [28] In another endoscopic neurolysis study, the presence of fibrovascular bands and bursal tissue was the most common cause, followed by musculotendinous structures. [29]
Genetics may play a role in creating the necessary conditions for entrapment to occur. Previously, physicians thought repetitive wrist and hand motions were the only cause of carpal tunnel syndrome, especially in frequent computer users. But now doctors understand that the syndrome is probably a congenital predisposition in that some individuals have bigger carpal tunnels as compared to others. [30] Gene variants associated with musculoskeletal growth and extracellular matrix architecture have been implicated in carpal tunnel syndrome. [31] A rarer genetic cause is HNPP.
Acute and chronic compression of a nerve in a given area can lead to a cascade of physiological changes resulting in impaired function and then anatomical changes in the later stages. [5] Specifically, increased pressure on a nerve compresses the neural microvasculature and alters the blood flow dynamics. [32] Experimental studies suggest a dose response curve such that the greater the duration and amount of pressure, the more significant is neural dysfunction. [33] Prolonged ischaemia and mechanical compromise may induce downstream effects such as inflammation, demyelination, scarring, and eventually axon degeneration. Neuroinflammation sensitizes injured and uninjured axons and nociceptors in target tissue, contributing to neuropathic pain initiation and maintenance. Focal demyelination is a hallmark of entrapment neuropathies, which are often characterized by nerve conduction slowing or block. [34] The initial changes are a break-down in the blood nerve barrier, followed by sub-perineurial edema and fibrosis; localized, then diffuse, demyelination occurs, and finally Wallerian degeneration. [33]
Clinical diagnosis can often identify compression neuropathy on signs and symptoms alone. While there are variations in how nerves course and branch, the anatomical territory of major nerves do not change from patient to patient. Some forms of nerve entrapment can have characteristic symptoms, such as sitting and pudendal pain. Pudendal neuralgia, for example, is diagnosed by the Nantes criteria with four out of five criteria being clinical. [35]
Diagnostic nerve blocks are very effective for identifying sensory entrapment points. Their strength is that they can directly measure whether a given nerve is contributing pain, or not. They are precise and reproducible. [36] As successful blocks require accurate targeting of the nerve, this is done under image guidance such as fluoroscopy, ultrasound, [37] CT, [37] or MRI. [38] Ultrasound is popular choice because of its soft-tissue contrast, portability, lack of radiation, and low cost, but is not good at depicting deeper structures like the deep pelvic nerves. For deeper structures, CT and MRI are more appropriate, although the equipment is more expensive. [39] [40] [41] [37] [38]
The challenge with diagnostic blocks is that there is often not good information to indicate exactly where the entrapment point may be. For example, symptoms may be poorly localized, [42] and the symptoms may be imprecise. [43] Consequently, multiple blocks may need to be performed on different nerves to find the correct one. A successful diagnostic block will lead to immediate and significant resolution of symptoms up to complete pain relief. [43] [44] The duration of the block will last several hours depending on the anesthetic used. [45]
MR and ultrasound can be used for peripheral nerve imaging. [46] Ultrasound is common for superficial nerves of the upper extremity such as carpal tunnel syndrome. [47] MR imaging is not always reliable in that often the clinical assessment and imaging do not match for peripheral neuropathies. [48] That is, there are false positives and false negatives which bring into question how reliable these scans are for diagnosis and surgical planning. There are known limitations of MR for the identification of nerve entrapment:
Despite these limitations, MR imaging studies can rule out certain causes of entrapment such as a mass lesion. Increasingly used are specialized forms of MRI such as MR neurography [49] (MRN) and MR tractography (MRT). Of the two MRT is more effective as it has a high correlation with intraoperative findings. [50]
The main electrophysiological studies are the nerve conduction study (NCS) and electromyography (EMG). The benefit of nerve conduction studies has not been proven beyond distal entrapment neuropathies (carpal tunnel syndrome and cubital tunnel syndrome). [51] An EMG is limited to just providing information on motor nerves, and provides limited information on the location, extent, and etiology of nerve injury. Electrophysiology is not very useful in pelvic sensory neuropathies or for interrogation of the deep pelvic nerves. [49]
The major limitation of extra-operative electrophysiology studies is that they do not have direct access to the nerve. In contrast, intra-operative electrophysiology studies can be done with direct access to the nerve, and this is a useful tool for nerve decompression surgery. During surgery the studies can be used to identify which nerves innervate given myotomes, identify which blood vessels are essential for a nerve, and to compare nerve conduction before and after decompression. [52] [53]
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. Several systemic conditions have been implicated in the development of nerve compression syndromes, including diabetes, thyroid disease, heavy alcohol use, generalized edema, and systemic inflammatory disease. [32] There is substantial evidence to support an association between certain work activities and carpal tunnel syndrome that involve repetitive motion. [54] Certain recreational activities such as bicycling are associated with pudendal neuralgia due to increased pressure on Alcock's canal. [55]
Non-surgical treatments includes rest and activity modification, physical therapy, ergonomic modifications, pain management, and steroid blocks. About 50% of the time, symptoms will improve with only conservative measures. [56] [57] Opioids can provide short-term pain relief in highly selected patients. [58] Steroid blocks can have a short-term benefit but have not shown to have long-term therapeutic benefit. [59] [60]
In select cases botox injections may also be an effective option, such as piriformis syndrome or migraines. [61] [62] [63] The effectiveness of botox injections is predicated on muscular entrapment such that atrophying a muscle reduces pressure on a nerve.
The decision to proceed with surgical interventions is a matter of when the severity of subjective symptoms outweighs the potential risks and complications. With muscle wasting or electromyographic evidence of denervation, timely surgical decompression is clearly indicated. [32]
Nerve decompressions aim to surgically access and explore some segment of nerve, removing any tissue that may be causing compression. In this way a nerve decompression can directly address the underlying cause of entrapment. A nerve decompression can either be done by open surgery or laparoscopic surgery. In some cases, like carpal tunnel syndrome, either approach is viable. [64] For deeper nerves, a laparoscopic approach is the only choice. New laparoscopic techniques allow surgeons to get access to previously unreachable pelvic structures such as the sacral plexus. [26] Nerve decompressions and resections are the only treatments with a known cure rate. It is a common clinical experience, that even chronic entrapments with longstanding muscle weakness and sensory disturbances sometimes show a very rapid reversibility of some or all of the symptoms after surgical decompression of the nerve. [5]
A large number of nerve decompression surgeries achieve 25+% cure rate, and 75+% success rate. [65] [66] [67] [68] It is not known why separate surgeries would have similar outcomes.
Nerve resections aim to eliminate the dermatome entirely along with any positive sensory symptoms such as pain. While nerve decompression may be used on any nerve, nerve resection should only be used on purely sensory nerves when the loss of sensation is acceptable. The superior cluneal nerves, middle cluneal nerves, posterior femoral cutaneous nerve, lateral femoral cutaneous nerve are all sensory and resection may simply be a more "complete" option, as nerve decompressions can't explore every part of the nerve and may miss some entrapment points. Outcomes for nerve resection is similar to nerve decompression. [69] [70] One disadvantage of nerve resections is that traumatic injury to the nerve is unavoidable, and a neuroma may form at the point of resection. There are surgical approaches to prevent neuroma formation [71] such as targeted muscle reinnervation [72] which have shown very good results, however the risk of neuroma formation is not completely eliminated.
Other surgical treatments include general neuromodulation treatments. Neuromodulation is symptomatic treatment and does not attempt to address the root cause of compression, but rather to alter the signals sent along the nerves to the brain. It can be a suitable choice when the source of compression has been removed, but the positive sensory symptoms such as pain aren't fully resolved. If neuromodulation is used without removing the source of compression, tissue injury might progress leading to worse outcomes when the source of compression is eventually removed. Better known neuromodulation treatments include the spinal cord stimulator and the intrathecal catheter. The disadvantage of these treatments is that they are not targeted for peripheral nerves (implantation is typically in the spinal cord), can only address sensory symptoms, can expose unrelated nerves to injury during implantation if placed in the spine, and have a high failure rate due to device migration. The spinal cord stimulator in particular has a very high complication rate, as high as 40%. [73] Advancements have been made to move these devices closer to peripheral nerves such as peripheral nerve stimulation [74] and the peripheral nerve catheter. [75] A challenge with these new treatment is that peripheral nerves are highly mobile, and it is difficult to fix a wire (called an electrical lead) or tube to something that's constantly moving, and it may migrate after implantation. For example, lead migration is a common long-term complication of both spinal cord stimulators and peripheral nerve stimulators. [73] [76]
The prevalence of nerve entrapment is not known, however a rough bound can be determined by data on lower and upper estimates. A lower bound is the prevalence of the most common entrapment neuropathy, carpal tunnel syndrome (CTS). [77] The prevalence is measured by sending screen questionnaires to a large random sample of a population, and giving the positive cases a full clinical and electrophysiological investigation. Studies in Sweden, Egypt, and the US have found the same general prevalence for CTS, of between 3.3–3.8%. [78] [79] [80] An upper bound is the prevalence of chronic pain with neuropathic characteristics. Not all neuropathic pain is nerve entrapment, but all nerve entrapment will cause neuropathic symptoms. The most reliable studies have an estimated prevalence of between 6.9–10%. [81]
The treatment of each peripheral nerve entrapment has its own history, making any single narrative incomplete. [82]
Theories on the causes of neuropathic pain have been closely intertwined with surgical research in a feedback loop. Theories of neuropathic pain would inform surgical experimentation, and surgical experimentation would lead to observations or discoveries from which new or modified theories would be developed. By the early 20th century the concept of mononeuropathies due to nerve lesions would be discussed (often called nerve palsy, neuropathy, or neuritis), however causes were still debated. [83] [84] One especially poorly understood form of neuropathy was a delayed onset nerve palsy, called tardy nerve palsy. [85] While some cases of tardy nerve palsy could be ascribed to obvious causes such a structural lesion (e.g. broken wrist) or tumors causing compression, many cases of tardy nerve palsy had no clear cause and so were deemed idiopathic (also called spontaneous compression). [86] Various surgical observations led to the theory that the median nerve could be compressed spontaneously under the transverse ligament of the wrist, an area that would later be known as the carpal tunnel in carpal tunnel syndrome. [86] This theory was supported by surgical observations and successfully treated case studies. [86] The development of carpal tunnel syndrome was of particular interest for other idiopathic tardy nerve palsies. Carpal tunnel served as a model for how nerves could be squeezed by narrow anatomic compartments and soon other tunnel syndromes were conceptualized, such as cubital tunnel syndrome, and tarsal tunnel syndrome. [87] [88] [83]
Nerve compression syndromes and their surgical treatment has caused controversy across various medical specialties.
In some cases, critics have disputed whether specific pain syndromes (which are now considered nerve compression syndromes) are real clinical entities, especially if the pathophysiology is not well understood. [105] [106] Even when there is agreement that a syndrome exists, there are disputes over the validity of diagnostic criteria as many nerve compression syndromes are partially a diagnosis of exclusion. [107] [108] [109] There has been skepticism over whether these syndromes can be said to really be nerve entrapment, as the diagnosis may be clinical which doesn't necessarily prove nerve compression. [106]
Proponents have alleged that the success of treating a large percent of previously untreatable patients with therapies designed to relieve nerve compression validates the thesis of nerve entrapment. [108] [44] They have noted that nerve compressions are seen in many other nerves, and that we should expect to see some number of patients with entrapments of any given peripheral nerve. [110] Some proponents have noted that failing to mention these syndromes as a real diagnosis is a disservice to the many patients who could benefit from its correct treatment every year. [44]
nerve | location | usually referred to as |
---|---|---|
supraorbital nerve | supraorbital notch [111] | migraine / frontal headache |
trigeminal nerve | nerve root | trigeminal neuralgia |
greater occipital nerve lesser occipital nerve third occipital nerve | occipital notch | occipital neuralgia |
glossopharyngeal nerve | nerve root | glossopharyngeal neuralgia |
nerve | location | usually referred to as |
---|---|---|
Brachial plexus | thoracic outlet | neurogenic thoracic outlet syndrome |
Median | carpal tunnel | carpal tunnel syndrome |
Median (anterior interosseous) | proximal forearm | anterior interosseous syndrome |
Median | pronator teres | pronator teres syndrome |
Median | ligament of Struthers | Ligament of Struthers syndrome |
Ulnar | cubital tunnel | Cubital tunnel syndrome |
Ulnar | Guyon's canal | Guyon's canal syndrome |
Radial | axilla | Radial nerve compression |
Radial | spiral groove | Radial nerve compression |
Radial (Posterior interosseous) | proximal forearm | posterior interosseous nerve entrapment |
Radial (Superficial radial) | distal forearm | Wartenberg's Syndrome |
Suprascapular | Suprascapular canal | suprascapular nerve entrapment |
nerve | location | usually referred to as |
---|---|---|
Common peroneal | fibular neck | peroneal nerve compression |
Tibial | tarsal tunnel | tarsal tunnel syndrome |
Saphenous | Roof of Adductor canal | Saphenous nerve entrapment syndrome |
Lateral cutaneous nerve of thigh | inguinal ligament | meralgia paraesthetica |
Sciatic | piriformis | piriformis syndrome |
Sciatic | gluteal space | deep gluteal syndrome [112] |
Iliohypogastric | lower abdomen | iliohypogastric nerve entrapment |
Obturator | obturator canal | obturator nerve entrapment |
Pudendal | Alcock's canal | pudendal nerve entrapment |
Pudendal | sacrospinous ligament | pudendal nerve entrapment |
anterior intercoastal nerves | lateral rectus abdominis muscle | anterior cutaneous nerve entrapment syndrome (ACNES) |
posterior femoral cutaneous | gluteal space | posterior femoral cutaneous nerve entrapment |
middle cluneal | posterior sacroiliac ligament | middle cluneal nerve entrapment (MCN-E) |
sacral plexus (s1-s4) | pelvis | sacral plexus entrapment or lumbosacral plexus entrapment |
superior cluneal | posterior iliac crest | super cluneal nerve entrapment (SCN-E) |
Carpal tunnel syndrome (CTS) is a nerve compression syndrome associated with the collected signs and symptoms of compression of the median nerve at the carpal tunnel in the wrist. Carpal tunnel syndrome is an idiopathic syndrome but there are environmental, and medical risk factors associated with the condition. CTS can affect both wrists.
The sciatic nerve, also called the ischiadic nerve, is a large nerve in humans and other vertebrate animals. It is the largest branch of the sacral plexus and runs alongside the hip joint and down the lower limb. It is the longest and widest single nerve in the human body, going from the top of the leg to the foot on the posterior aspect. The sciatic nerve has no cutaneous branches for the thigh. This nerve provides the connection to the nervous system for the skin of the lateral leg and the whole foot, the muscles of the back of the thigh, and those of the leg and foot. It is derived from spinal nerves L4 to S3. It contains fibres from both the anterior and posterior divisions of the lumbosacral plexus.
Sciatica is pain going down the leg from the lower back. This pain may go down the back, outside, or front of the leg. Onset is often sudden following activities like heavy lifting, though gradual onset may also occur. The pain is often described as shooting. Typically, symptoms are only on one side of the body. Certain causes, however, may result in pain on both sides. Lower back pain is sometimes present. Weakness or numbness may occur in various parts of the affected leg and foot.
Pudendal nerve entrapment (PNE), also known as Alcock canal syndrome, is an uncommon source of chronic pain in which the pudendal nerve is entrapped or compressed in Alcock's canal. There are several different types of PNE based on the site of entrapment anatomically. Pain is positional and is worsened by sitting. Other symptoms include genital numbness, fecal incontinence and urinary incontinence.
Diabetic neuropathy includes various types of nerve damage associated with diabetes mellitus. The most common form, diabetic peripheral neuropathy, affects 30% of all diabetic patients. Symptoms depend on the site of nerve damage and can include motor changes such as weakness; sensory symptoms such as numbness, tingling, or pain; or autonomic changes such as urinary symptoms. These changes are thought to result from a microvascular injury involving small blood vessels that supply nerves. Relatively common conditions which may be associated with diabetic neuropathy include distal symmetric polyneuropathy; third, fourth, or sixth cranial nerve palsy; mononeuropathy; mononeuropathy multiplex; diabetic amyotrophy; and autonomic neuropathy.
Peripheral neuropathy, often shortened to neuropathy, refers to damage or disease affecting the nerves. Damage to nerves may impair sensation, movement, gland function, and/or organ function depending on which nerve fibers are affected. Neuropathies affecting motor, sensory, or autonomic nerve fibers result in different symptoms. More than one type of fiber may be affected simultaneously. Peripheral neuropathy may be acute or chronic, and may be reversible or permanent.
Piriformis syndrome is a condition which is believed to result from nerve compression at the sciatic nerve by the piriformis muscle. It is a specific case of deep gluteal syndrome.
Neuropathic pain is pain caused by a lesion or disease of the somatosensory nervous system. Neuropathic pain may be associated with abnormal sensations called dysesthesia or pain from normally non-painful stimuli (allodynia). It may have continuous and/or episodic (paroxysmal) components. The latter resemble stabbings or electric shocks. Common qualities include burning or coldness, "pins and needles" sensations, numbness and itching.
Tarsal tunnel syndrome (TTS) is a nerve compression syndrome or nerve entrapment syndrome causing a painful foot condition in which the tibial nerve is entrapped as it travels through the tarsal tunnel. The tarsal tunnel is found along the inner leg behind the medial malleolus. The posterior tibial artery, tibial nerve, and tendons of the tibialis posterior, flexor digitorum longus, and flexor hallucis longus muscles travel in a bundle through the tarsal tunnel. Inside the tunnel, the nerve splits into three segments. One nerve (calcaneal) continues to the heel, the other two continue on to the bottom of the foot. The tarsal tunnel is delineated by bone on the inside and the flexor retinaculum on the outside.
The inferior gluteal nerve is the main motor neuron that innervates the gluteus maximus muscle. It is responsible for the movement of the gluteus maximus in activities requiring the hip to extend the thigh, such as climbing stairs. Injury to this nerve is rare but often occurs as a complication of posterior approach to the hip during hip replacement. When damaged, one would develop gluteus maximus lurch, which is a gait abnormality which causes the individual to 'lurch' backwards to compensate lack in hip extension.
The superior cluneal nerves are pure sensory nerves that innervate the skin of the upper part of the buttocks. They are the terminal ends of the L1-L3 spinal nerve dorsal rami lateral branches. They are one of three different types of cluneal nerves. They travel inferiorly through multiple layers of muscles, then traverse osteofibrous tunnels between the thoracolumbar fascia and iliac crest.
Ulnar tunnel syndrome, also known as Guyon's canal syndrome or Handlebar palsy, is ulnar neuropathy at the wrist where it passes through the ulnar tunnel. The most common presentation is a palsy of the deep motor branch of the ulnar nerve causing weakness of the interosseous muscles. Ulnar tunnel syndrome is usually caused by a ganglion cyst pressing on the ulnar nerve, other causes include traumas to the wrist and repetitive movements, but often the cause is unknown (idiopathic). Long distance bicycle rides are associated with transient alterations in ulnar nerve function. Sensory loss in the ring and small fingers is usually due to ulnar nerve entrapment at the cubital tunnel near the elbow, which is known as cubital tunnel syndrome, although it can uncommonly be due to compression at the wrist.
Idiopathic ulnar neuropathy at the elbow is a condition where pressure on the ulnar nerve as it passes through the cubital tunnel causes ulnar neuropathy. The symptoms of neuropathy are paresthesia (tingling) and numbness primarily affecting the little finger and ring finger of the hand. Ulnar neuropathy can progress to weakness and atrophy of the muscles in the hand. Symptoms can be alleviated by the use of a splint to prevent the elbow from flexing while sleeping.
Magnetic resonance neurography (MRN) is the direct imaging of nerves in the body by optimizing selectivity for unique MRI water properties of nerves. It is a modification of magnetic resonance imaging. This technique yields a detailed image of a nerve from the resonance signal that arises from in the nerve itself rather than from surrounding tissues or from fat in the nerve lining. Because of the intraneural source of the image signal, the image provides a medically useful set of information about the internal state of the nerve such as the presence of irritation, nerve swelling (edema), compression, pinch or injury. Standard magnetic resonance images can show the outline of some nerves in portions of their courses but do not show the intrinsic signal from nerve water. Magnetic resonance neurography is used to evaluate major nerve compressions such as those affecting the sciatic nerve (e.g. piriformis syndrome), the brachial plexus nerves (e.g. thoracic outlet syndrome), the pudendal nerve, or virtually any named nerve in the body. A related technique for imaging neural tracts in the brain and spinal cord is called magnetic resonance tractography or diffusion tensor imaging.
Pronator teres syndrome is a compression neuropathy of the median nerve at the elbow. It is rare compared to compression at the wrist or isolated injury of the anterior interosseous branch of the median nerve.
Peripheral mononeuropathy is a nerve related disease where a single nerve, that is used to transport messages from the brain to the peripheral body, is diseased or damaged. Peripheral neuropathy is a general term that indicates any disorder of the peripheral nervous system. The name of the disorder itself can be broken down in order to understand this better; peripheral: in regard to peripheral neuropathy, refers to outside of the brain and spinal cord; neuro: means nerve related; -pathy; means disease. Peripheral mononeuropathy is a disorder that links to Peripheral Neuropathy, as it only effects a single peripheral nerve rather than several damaged or diseased nerves throughout the body. Healthy peripheral nerves are able to “carry messages from the brain and spinal cord to muscles, organs, and other body tissues”.
A nerve decompression is a neurosurgical procedure to relieve chronic, direct pressure on a nerve to treat nerve entrapment, a pain syndrome characterized by severe chronic pain and muscle weakness. In this way a nerve decompression targets the underlying pathophysiology of the syndrome and is considered a first-line surgical treatment option for peripheral nerve pain. Despite treating the underlying cause of the disease, the symptoms may not be fully reversible as delays in diagnosis can allow permanent damage to occur to the nerve and surrounding microvasculature. Traditionally only nerves accessible with open surgery have been good candidates, however innovations in laparoscopy and nerve-sparing techniques made nearly all nerves in the body good candidates, as surgical access is no longer a barrier.
Deep gluteal syndrome describes the non-discogenic extrapelvic entrapment of the sciatic nerve in the deep gluteal space. In simpler terms this is sciatica due to nerve irritation in the buttocks rather than the spine or pelvis. It is an extension of non-discogenic sciatic nerve entrapment beyond the traditional model of piriformis syndrome. Where sciatic nerve irritation in the buttocks was once thought of as only piriformis muscle, it is now recognized that there are many other causes. Symptoms are pain or dysthesias in the buttocks, hip, and posterior thigh with or without radiating leg pain. Patients often report pain when sitting. The two most common causes are piriformis syndrome and fibrovascular bands, but many other causes exist. Diagnosis is usually done through physical examination, magnetic resonance imaging, magnetic resonance neurography, and diagnostic nerve blocks. Surgical treatment is an endoscopic sciatic nerve decompression where tissue around the sciatic nerve is removed to relieve pressure.
Nerve entrapment involves a cascade of physiological changes caused by compression and tension. Some of these changes are irreversible. The magnitude and duration of the forces determines the extent of injury. In the acute form, mechanical injury and metabolic blocks impede nerve function. In the chronic form, there is a sequence of changes starting with a breakdown of the blood-nerve-barrier, followed by edema with connective tissue changes, followed by diffuse demyelination, and finally followed by axonmetesis. The injury will often be a mixed lesion where mild/moderate compression is a combination of a metabolic block and neuropraxia, while severe compression combines elements of neuropraxia and axonmetesis.