Edema

Last updated
Edema
Other namesOedema, œdema, fluid retention, water retention, dropsy, hydropsy, swelling
Combinpedal.jpg
"Pitting" edema
Pronunciation
Specialty Cardiology, nephrology
Symptoms Skin which feels tight, area may feel heavy [1]
Usual onsetSudden or gradual [2]
TypesGeneralized, localized [2]
Causes Venous insufficiency, heart failure, kidney problems, low protein levels, liver problems, deep vein thrombosis, lymphedema [1] [2]
Diagnostic method Based on a physical exam [3]
TreatmentBased on cause [2]

Edema, also spelled oedema, and also known as fluid retention, dropsy, hydropsy and swelling, is the build-up of fluid in the body's tissue. [1] Most commonly, the legs or arms are affected. [1] Symptoms may include skin which feels tight, the area may feel heavy, and affected joints may be hard to move. [1] Other symptoms depend on the underlying cause. [2]

Contents

Causes may include venous insufficiency, heart failure, kidney problems, low protein levels, liver problems, deep vein thrombosis, infections, angioedema, certain medications, and lymphedema. [1] [2] It may also occur after prolonged sitting or standing and during menstruation or pregnancy. [1] The condition is more concerning if it starts suddenly, or pain or shortness of breath is present. [2]

Treatment depends on the underlying cause. [2] If the underlying mechanism involves sodium retention, decreased salt intake and a diuretic may be used. [2] Elevating the legs and support stockings may be useful for edema of the legs. [3] Older people are more commonly affected. [3] The word is from the Greek οἴδημαoídēma meaning 'swelling'. [4]

Signs and symptoms

Specific area

An edema will occur in specific organs as part of inflammations, tendonitis or pancreatitis, for instance. Certain organs develop edema through tissue specific mechanisms. Examples of edema in specific organs:

Generalized

A rise in hydrostatic pressure occurs in cardiac failure. A fall in osmotic pressure occurs in nephrotic syndrome and liver failure. [6]

Causes of edema which are generalized to the whole body can cause edema in multiple organs and peripherally. For example, severe heart failure can cause pulmonary edema, pleural effusions, ascites and peripheral edema. Such severe systemic edema is called anasarca. In rare cases, a Parvovirus B19 infection may cause generalized edemas. [7]

Although a low plasma oncotic pressure is widely cited for the edema of nephrotic syndrome, most physicians note that the edema may occur before there is any significant protein in the urine (proteinuria) or fall in plasma protein level. Most forms of nephrotic syndrome are due to biochemical and structural changes in the basement membrane of capillaries in the kidney glomeruli, and these changes occur, if to a lesser degree, in the vessels of most other tissues of the body. Thus the resulting increase in permeability that leads to protein in the urine can explain the edema if all other vessels are more permeable as well. [8]

As well as the previously mentioned conditions, edemas often occur during the late stages of pregnancy in some women. This is more common with those of a history of pulmonary problems or poor circulation also being intensified if arthritis is already present in that particular woman. Women who already have arthritic problems most often have to seek medical help for pain caused from over-reactive swelling. Edemas that occur during pregnancy are usually found in the lower part of the leg, usually from the calf down.

Hydrops fetalis is a condition in a baby characterized by an accumulation of fluid in at least two body compartments.

Cause

Heart

The pumping force of the heart should help to keep a normal pressure within the blood vessels. But if the heart begins to fail (a condition known as congestive heart failure) the pressure changes can cause very severe water retention. In this condition water retention is mostly visible in the legs, feet and ankles, but water also collects in the lungs, where it causes a chronic cough. This condition is usually treated with diuretics; otherwise, the water retention may cause breathing problems and additional stress on the heart. [9]

Kidneys

Another cause of severe water retention is kidney failure, where the kidneys are no longer able to filter fluid out of the blood and turn it into urine. Kidney disease often starts with inflammation, for instance in the case of diseases such as nephrotic syndrome or lupus. Once again, this type of water retention is usually visible in the form of swollen legs and ankles.

Protein

Protein attracts water and plays an important role in water balance. In cases of severe protein deficiency, the blood may not contain enough protein to attract water from the tissue spaces back into the capillaries. This is why starvation often shows an enlarged abdomen. The abdomen is swollen with edema or water retention caused by the lack of protein in the diet.

When the capillary walls are too permeable, protein can leak out of the blood and settle in the tissue spaces. It will then act like a magnet for water, continuously attracting more water from the blood to accumulate in the tissue spaces. [10]

Others

Swollen legs, feet and ankles are common in late pregnancy. The problem is partly caused by the weight of the uterus on the major veins of the pelvis. It usually clears up after delivery of the baby, and is mostly not a cause for concern, [11] though it should always be reported to a doctor.

Lack of exercise is another common cause of water retention in the legs. Exercise helps the leg veins work against gravity to return blood to the heart. If blood travels too slowly and starts to pool in the leg veins, the pressure can force too much fluid out of the leg capillaries into the tissue spaces. The capillaries may break, leaving small blood marks under the skin. The veins themselves can become swollen, painful and distorted – a condition known as varicose veins. [12] Muscle action is needed not only to keep blood flowing through the veins but also to stimulate the lymphatic system to fulfil its "overflow" function. Long-haul flights, lengthy bed-rest, immobility caused by disability and so on, are all potential causes of water retention. Even very small exercises such as rotating ankles and wiggling toes can help to reduce it. [13]

Certain medications are prone to causing water retention. These include estrogens, thereby including drugs for hormone replacement therapy or the combined oral contraceptive pill, [14] as well as non-steroidal anti-inflammatory drugs [15] and beta-blockers. [16]

Premenstrual water retention, causing bloating and breast tenderness, is common. [17] [18] [19]

A swelling can be a lipoma.

Mechanism

Six factors can contribute to the formation of edema:

  1. increased hydrostatic pressure;
  2. reduced colloidal or oncotic pressure within blood vessels;
  3. increased tissue colloidal or oncotic pressure;
  4. increased blood vessel wall permeability (e.g., inflammation);
  5. obstruction of fluid clearance in the lymphatic system;
  6. changes in the water retaining properties of the tissues themselves. Raised hydrostatic pressure often reflects retention of water and sodium by the kidneys. [20]

Generation of interstitial fluid is regulated by the forces of the Starling equation. [21] Hydrostatic pressure within blood vessels tends to cause water to filter out into the tissue. This leads to a difference in protein concentration between blood plasma and tissue. As a result, the colloidal or oncotic pressure of the higher level of protein in the plasma tends to draw water back into the blood vessels from the tissue. Starling's equation states that the rate of leakage of fluid is determined by the difference between the two forces and also by the permeability of the vessel wall to water, which determines the rate of flow for a given force imbalance. Most water leakage occurs in capillaries or post capillary venules, which have a semi-permeable membrane wall that allows water to pass more freely than protein. (The protein is said to be reflected and the efficiency of reflection is given by a reflection constant of up to 1.) If the gaps between the cells of the vessel wall open up then permeability to water is increased first, but as the gaps increase in size permeability to protein also increases with a fall in reflection coefficient.

Changes in the variables in Starling's equation can contribute to the formation of edemas either by an increase in hydrostatic pressure within the blood vessel, a decrease in the oncotic pressure within the blood vessel or an increase in vessel wall permeability. The latter has two effects. It allows water to flow more freely and it reduces the colloidal or oncotic pressure difference by allowing protein to leave the vessel more easily.

Another set of vessels known as the lymphatic system acts like an "overflow" and can return much excess fluid to the bloodstream. But even the lymphatic system can be overwhelmed, and if there is simply too much fluid, or if the lymphatic system is congested, then the fluid will remain in the tissues, causing swellings in legs, ankles, feet, abdomen or any other part of the body. [22]

Diagnosis

Grading of edema [23]
GradeDefinition
AbsentAbsent
+Mild: Both feet / ankles
++Moderate: Both feet,
plus lower legs,
hands or lower arms
+++Severe: Generalised
bilateral pitting edema,
including both feet,
legs, arms and face

Cutaneous edema is referred to as "pitting" when, after pressure is applied to a small area, the indentation persists after the release of the pressure. Peripheral pitting edema, as shown in the illustration, is the more common type, resulting from water retention. It can be caused by systemic diseases, pregnancy in some women, either directly or as a result of heart failure, or local conditions such as varicose veins, thrombophlebitis, insect bites, and dermatitis.

Non-pitting edema is observed when the indentation does not persist. It is associated with such conditions as lymphedema, lipedema, and myxedema.

Edema caused by malnutrition defines kwashiorkor, an acute form of childhood protein-energy malnutrition characterized by edema, irritability, anorexia, ulcerating dermatoses, and an enlarged liver with fatty infiltrates.

Treatment

Case 11-leftN.PNG
Vein obstruction causes facial edema while lying down to sleep.
Case 11-rightN.png
After being upright all day, the swelling disappears.

When possible, treatment involves resolving the underlying cause. Many cases of heart or kidney disease, are treated with diuretics. [9]

Treatment may also involve positioning the affected body parts to improve drainage. For example, swelling in feet or ankles may be reduced by having the person lie down in bed or sit with the feet propped up on cushions. Intermittent pneumatic compression can be used to pressurize tissue in a limb, forcing fluids—both blood and lymph—to flow out of the compressed area.

Related Research Articles

Kwashiorkor Severe protein malnutrition

Kwashiorkor is a form of severe protein malnutrition characterized by edema and an enlarged liver with fatty infiltrates. It is thought to be caused by sufficient calorie intake, but with insufficient protein consumption, which distinguishes it from marasmus. Recent studies have found that a lack of antioxidant micronutrients such as Vitamin C, β- carotene, lycopene, and carotenoids as well as the presence of aflatoxins may play a role in the development of the disease. However, the exact cause of kwashiorkor is still unknown. Inadequate food supply is correlated with occurrences of kwashiorkor; occurrences in high income countries are rare. It occurs amongst weaning children to ages of about 5 years old.

Capillary Smallest type of blood vessel

A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter, and having a wall one endothelial cell thick. They are the smallest blood vessels in the body: they convey blood between the arterioles and venules. These microvessels are the site of exchange of many substances with the interstitial fluid surrounding them. Substances which cross capillaries include water, oxygen, carbon dioxide, urea, glucose, uric acid, lactic acid and creatinine. Lymph capillaries connect with larger lymph vessels to drain lymphatic fluid collected in the microcirculation.

Oncotic pressure, or colloid osmotic-pressure, is a form of osmotic pressure induced by the proteins, notably albumin, in a blood vessel's plasma (blood/liquid) that displaces water molecules, thus creating a relative water molecule deficit with water molecules moving back into the circulatory system within the lower venous pressure end of capillaries. It has the opposing effect of both hydrostatic blood pressure pushing water and small molecules out of the blood into the interstitial spaces within the arterial end of capillaries and interstitial colloidal osmotic pressure. These interacting factors determine the partition balancing of total body extracellular water between the blood plasma and the larger extracellular water volume outside the blood stream.

Nephrotic syndrome Collection of symptoms due to kidney damage

Nephrotic syndrome is a collection of symptoms due to kidney damage. This includes protein in the urine, low blood albumin levels, high blood lipids, and significant swelling. Other symptoms may include weight gain, feeling tired, and foamy urine. Complications may include blood clots, infections, and high blood pressure.

Lymph Fluid that circulates throughout lymphatic system

Lymph is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to the central circulation. Interstitial fluid – the fluid between the cells in all body tissues – enters the lymph capillaries. This lymphatic fluid is then transported via progressively larger lymphatic vessels through lymph nodes, where substances are removed by tissue lymphocytes and circulating lymphocytes are added to the fluid, before emptying ultimately into the right or the left subclavian vein, where it mixes with central venous blood.

Microcirculation Circulation of the blood in the smallest blood vessels

The microcirculation is the circulation of the blood in the smallest blood vessels, the microvessels of the microvasculature present within organ tissues. The microvessels include terminal arterioles, metarterioles, capillaries, and venules. Arterioles carry oxygenated blood to the capillaries, and blood flows out of the capillaries through venules into veins.

Extracellular fluid Body fluid outside the cells of a multicellular organism

In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 60% of total body weight; women and the obese typically have a lower percentage than lean men. Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. The main component of the extracellular fluid is the interstitial fluid that surrounds cells.

Glomerulus (kidney)

The glomerulus is a network of small blood vessels (capillaries) known as a tuft, located at the beginning of a nephron in the kidney. Each of the two kidneys contains about one million nephrons. The tuft is structurally supported by the mesangium, composed of intraglomerular mesangial cells. The blood is filtered across the capillary walls of this tuft through the glomerular filtration barrier, which yields its filtrate of water and soluble substances to a cup-like sac known as Bowman's capsule. The filtrate then enters the renal tubule of the nephron.

Anasarca Medical condition

Anasarca is a severe and generalized form of edema, with subcutaneous tissue swelling throughout the body. Unlike edema, which almost everyone will experience at some time and can be relatively benign, Anasarca is a pathological process reflecting a severe disease state and can involve the cavities of the body in addition to the tissues.

The Starling equation describes the net flow of fluid across a semipermeable membrane. It is named after Ernest Starling. It describes the balance between capillary pressure, interstitial pressure, and osmotic pressure. The classic Starling equation has in recent years been revised. The Starling principle of fluid exchange is key to understanding how plasma fluid (solvent) within the bloodstream moves to the space outside the bloodstream.

Glomerulonephritis Term for several kidney diseases

Glomerulonephritis (GN) is a term used to refer to several kidney diseases. Many of the diseases are characterised by inflammation either of the glomeruli or of the small blood vessels in the kidneys, hence the name, but not all diseases necessarily have an inflammatory component.

Minimal change disease Medical condition

Minimal change disease is a disease affecting the kidneys which causes a nephrotic syndrome. Nephrotic syndrome leads to the loss of significant amounts of protein in the urine, which causes the widespread edema and impaired kidney function commonly experienced by those affected by the disease. It is most common in children and has a peak incidence at 2 to 6 years of age. MCD is responsible for 10-25% of nephrotic syndrome cases in adults. It is also the most common cause of nephrotic syndrome of unclear cause (idiopathic) in children.

Transudate is extravascular fluid with low protein content and a low specific gravity. It has low nucleated cell counts and the primary cell types are mononuclear cells: macrophages, lymphocytes and mesothelial cells. For instance, an ultrafiltrate of blood plasma is transudate. It results from increased fluid pressures or diminished colloid oncotic forces in the plasma.

Hypervolemia Medical condition

Hypervolemia, also known as fluid overload, is the medical condition where there is too much fluid in the blood. The opposite condition is hypovolemia, which is too little fluid volume in the blood. Fluid volume excess in the intravascular compartment occurs due to an increase in total body sodium content and a consequent increase in extracellular body water. The mechanism usually stems from compromised regulatory mechanisms for sodium handling as seen in congestive heart failure (CHF), kidney failure, and liver failure. It may also be caused by excessive intake of sodium from foods, intravenous (IV) solutions and blood transfusions, medications, or diagnostic contrast dyes. Treatment typically includes administration of diuretics and limit the intake of water, fluids, sodium, and salt.

Hypoalbuminemia Medical condition

Hypoalbuminemia is a medical sign in which the level of albumin in the blood is low. This can be due to decreased production in the liver, increased loss in the gastrointestinal tract or kidneys, increased use in the body, or abnormal distribution between body compartments. Patients often present with hypoalbuminemia as a result of another disease process such as sepsis, cirrhosis in the liver, nephrotic syndrome in the kidneys, or protein-losing enteropathy in the gastrointestinal tract. One of the roles of albumin is being the major driver of oncotic pressure in the bloodstream and the body. Thus, hypoalbuminemia leads to abnormal distributions of fluids within the body and its compartments. As a result, associated symptoms include edema in the lower legs, ascites in the abdomen, and effusions around internal organs. Laboratory tests aimed at assessing liver function diagnose hypoalbuminemia. Once identified, it is a poor prognostic indicator for patients with a variety of different diseases. Yet, it is only treated in very specific indications in patients with cirrhosis and nephrotic syndrome. Treatment instead focuses on the underlying cause of the hypoalbuminemia. Albumin is an acute negative phase respondent and not a reliable indicator of nutrition status.

The human body and even its individual body fluids may be conceptually divided into various fluid compartments, which, although not literally anatomic compartments, do represent a real division in terms of how portions of the body's water, solutes, and suspended elements are segregated. The two main fluid compartments are the intracellular and extracellular compartments. The intracellular compartment is the space within the organism's cells; it is separated from the extracellular compartment by cell membranes.

Glomerulonephrosis is a non-inflammatory disease of the kidney (nephrosis) presenting primarily in the glomerulus as Nephrotic Syndrome. The nephron is the functional unit of the kidney and it contains the glomerulus, which acts as a filter for blood to retain proteins and blood lipids. Damage to these filtration units results in important blood contents being released as waste in urine. This disease can be characterized by symptoms such as fatigue, swelling, and foamy urine, and can lead to chronic kidney disease and ultimately end-stage renal disease, as well as cardiovascular diseases. Glomerulonephrosis can present as either primary glomerulonephrosis or secondary glomerulonephrosis.

In physiology, aldosterone escape is a term that has been used to refer to two distinct phenomena involving aldosterone that are exactly opposite each other:

  1. Escape from the sodium-retaining effects of excess aldosterone in primary hyperaldosteronism, manifested by volume and/or pressure natriuresis.
  2. The inability of ACE inhibitor therapy to reliably suppress aldosterone release, for example, in patients with heart failure or diabetes, usually manifested by increased salt and water retention. This latter sense may rather be termed refractory hyperaldosteronism.

Stasis papillomatosis is a disease characterized by chronic congestion of the extremities, with blood circulation interrupted in a specific area of the body. A consequence of this congestion and inflammation is long-term lymphatic obstruction. It is also typically characterized by the appearance of numerous papules. Injuries can range from small to large plates composed of brown or pink, smooth or hyperkeratotic papules. The most typical areas where injuries occur are the back of the feet, the toes, the legs, and the area around a venous ulcer formed in the extremities, although the latter is the rarest of all. These injuries include pachydermia, lymphedema, lymphomastic verrucusis and elephantosis verracosa. The disease can be either localized or generalized; the localized form makes up 78% of cases. Treatment includes surgical and pharmaceutical intervention; indications for partial removal include advanced fibrotic lymphedema and elephantiasis. Despite the existence of these treatments, chronic venous edema, which is a derivation of stasis papillomatosis, is only partially reversible. The skin is also affected and its partial removal may mean that the skin and the subcutaneous tissue are excised. A side effect of the procedure is the destruction of existing cutaneous lymphatic vessels. It also risks papillomatosis, skin necrosis and edema exacerbation.

Pathophysiology of heart failure

The main pathophysiology of heart failure is a reduction in the efficiency of the heart muscle, through damage or overloading. As such, it can be caused by a wide number of conditions, including myocardial infarction, hypertension and amyloidosis. Over time these increases in workload will produce changes to the heart itself:

References

  1. 1 2 3 4 5 6 7 Causes and signs of edema. Institute for Quality and Efficiency in Health Care (IQWiG). 2016.
  2. 1 2 3 4 5 6 7 8 9 "Edema - Cardiovascular Disorders". Merck Manuals Professional Edition. Retrieved 8 December 2019.
  3. 1 2 3 "Edema: Causes, Symptoms, Diagnosis & Treatment". familydoctor.org. Retrieved 23 December 2019.
  4. Liddell, Henry. "A Greek-English Lexicon, οἴδ-ημα". www.perseus.tufts.edu. Retrieved 8 December 2019.
  5. C.Michael Hogan (2008) "Western poison-oak: Toxicodendron diversilobum" Archived July 21, 2009, at the Wayback Machine , GlobalTwitcher, ed. Nicklas Strömberg
  6. Renkin EM (1994). "Cellular aspects of transvascular exchange: a 40-year perspective". Microcirculation. 1 (3): 157–67. doi:10.3109/10739689409148270. PMID   8790586. S2CID   28046134.
  7. Wiggli B, Imhof E, Meier CA, Laifer G (2013). "Water, water, everywhere. Acute parvovirus B19 infection". Lancet. 381 (9868): 776. doi:10.1016/S0140-6736(12)61894-7. PMID   23472922. S2CID   19300719.
  8. Palmer BF, Alpern RJ (1997). "Pathogenesis of edema formation in the nephrotic syndrome". Kidney Int. Suppl. 59: S21–7. PMID   9185099.
  9. 1 2 Casu, Gavino; Merella, Pierluigi (July 2015). "Diuretic Therapy in Heart Failure – Current Approaches". European Cardiology Review. 10 (1): 42–47. doi:10.15420/ecr.2015.10.01.42. ISSN   1758-3756. PMC   6159465 . PMID   30310422.
  10. Meisenberg, Gerhard; Simmons, William H. (2006). Principles of Medical Biochemistry (2nd ed.). Philadelphia: Elsevier Health Sciences. p.  258. ISBN   978-0-32302-942-1.
  11. Heine, R. Phillips; Swamy, Geeta K. "Lower-Extremity Edema During Late Pregnancy". The Merck Manual . Retrieved 9 August 2017.
  12. Timby, Barbara Kuhn; Smith, Nancy E. (2006). Introductory Medical-Surgical Nursing (9th ed.). Philadelphia: Lippincott Williams & Wilkins. p.  488. ISBN   978-0-78178-032-2.
  13. Zuther, Joachim E. (2005). Lymphedema Management: The Comprehensive Guide for Practitioners (1st ed.). New York: Thieme Medical Publishers. p.  222. ISBN   978-1-58890-284-9.
  14. "Estrogens (Conjugated/Equine)". The Merck Manual. Archived from the original on 2 December 2007. Retrieved 9 August 2017.
  15. "Medscape Today".(subscription required)
  16. "Beta-Blockers for High Blood Pressure". WebMD . Retrieved 9 August 2017.
  17. Lee-Ellen C. Copstead-Kirkhorn; Jacquelyn L. Banasik (25 June 2014). Pathophysiology. Elsevier Health Sciences. pp. 660–. ISBN   978-0-323-29317-4.
  18. Farage MA, Neill S, MacLean AB (2009). "Physiological changes associated with the menstrual cycle: a review". Obstet Gynecol Surv. 64 (1): 58–72. doi:10.1097/OGX.0b013e3181932a37. PMID   19099613. S2CID   22293838.
  19. Charlotte Pooler (1 October 2009). Porth Pathophysiology: Concepts of Altered Health States. Lippincott Williams & Wilkins. pp. 1075, 1107. ISBN   978-1-60547-781-7.
  20. Kumar; Abbas; Fausto (1999). Pathologic Basis of Disease (7th ed.). Elsevier Saunders. p. 122. ISBN   0-7216-0187-1.
  21. Boron W.F., Boulpaep E.L. (2012.) Medical Physiology: A Cellular and Molecular Approach, 2e. Saunders/Elsevier, Philadelphia, PA.
  22. Rubin, Emanuel (2008). Essentials of Rubin's Pathology (5th ed.). Philadelphia: Lippincott Williams & Wilkins. p. 124. ISBN   978-0-78177-324-9.
  23. Nutrition in Emergencies > Measuring œdema. Erin Boyd, reviewed by Diane Holland, Nutrition in Emergencies Unit, UNICEF. Retrieved Nov 2012
Classification
D
External resources