Protein kinase C

Last updated
Protein kinase C
Identifiers
EC no. 2.7.11.13
CAS no. 141436-78-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Protein kinase C terminal domain
Identifiers
SymbolPkinase_C
Pfam PF00433
InterPro IPR017892
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In cell biology, protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and threonine amino acid residues on these proteins, or a member of this family. PKC enzymes in turn are activated by signals such as increases in the concentration of diacylglycerol (DAG) or calcium ions (Ca2+). [1] Hence PKC enzymes play important roles in several signal transduction cascades. [2]

Contents

In biochemistry, the PKC family consists of fifteen isozymes in humans. [3] They are divided into three subfamilies, based on their second messenger requirements: conventional (or classical), novel, and atypical. [4] Conventional (c)PKCs contain the isoforms α, βI, βII, and γ. These require Ca2+, DAG, and a phospholipid such as phosphatidylserine for activation. Novel (n)PKCs include the δ, ε, η, and θ isoforms, and require DAG, but do not require Ca2+ for activation. Thus, conventional and novel PKCs are activated through the same signal transduction pathway as phospholipase C. On the other hand, atypical (a)PKCs (including protein kinase Mζ and ι / λ isoforms) require neither Ca2+ nor diacylglycerol for activation. The term "protein kinase C" usually refers to the entire family of isoforms. The different classes of PKCs found in jawed vertebrates originate from 5 ancestral PKC family members (PKN, aPKC, cPKC, nPKCE, nPKCD) that expanded due to genome duplication. [5] The broader PKC family is ancient and can be found back in fungi, which means that the PKC family was present in the last common ancestor of opisthokonts.

Human isozymes

Structure

The structure of all PKCs consists of a regulatory domain and a catalytic domain (active site) tethered together by a hinge region. The catalytic region is highly conserved among the different isoforms, as well as, to a lesser degree, among the catalytic region of other serine/threonine kinases. The second messenger requirement differences in the isoforms are a result of the regulatory region, which are similar within the classes, but differ among them. Most of the crystal structure of the catalytic region of PKC has not been determined, except for PKC theta and iota. Due to its similarity to other kinases whose crystal structure have been determined, the structure can be strongly predicted.

Regulatory

The regulatory domain or the amino-terminus of the PKCs contains several shared subregions. The C1 domain, present in all of the isoforms of PKC has a binding site for DAG as well as non-hydrolysable, non-physiological analogues called phorbol esters. This domain is functional and capable of binding DAG in both conventional and novel isoforms, however, the C1 domain in atypical PKCs is incapable of binding to DAG or phorbol esters. The C2 domain acts as a Ca2+ sensor and is present in both conventional and novel isoforms, but functional as a Ca2+ sensor only in the conventional. The pseudosubstrate region, which is present in all three classes of PKC, is a small sequence of amino acids that mimic a substrate and bind the substrate-binding cavity in the catalytic domain, lack critical serine, threonine phosphoacceptor residues, keeping the enzyme inactive. When Ca2+ and DAG are present in sufficient concentrations, they bind to the C2 and C1 domain, respectively, and recruit PKC to the membrane. This interaction with the membrane results in release of the pseudosubstrate from the catalytic site and activation of the enzyme. In order for these allosteric interactions to occur, however, PKC must first be properly folded and in the correct conformation permissive for catalytic action. This is contingent upon phosphorylation of the catalytic region, discussed below.

Catalytic

The catalytic region or kinase core of the PKC allows for different functions to be processed; PKB (also known as Akt) and PKC kinases contains approximately 40% amino acid sequence similarity. This similarity increases to ~ 70% across PKCs and even higher when comparing within classes. For example, the two atypical PKC isoforms, ζ and ι/λ, are 84% identical (Selbie et al., 1993). Of the over-30 protein kinase structures whose crystal structure has been revealed, all have the same basic organization. They are a bilobal structure with a β sheet comprising the N-terminal lobe and an α helix constituting the C-terminal lobe. Both the ATP-binding protein (ATP)- and the substrate-binding sites are located in the cleft formed by these two terminal lobes. This is also where the pseudosubstrate domain of the regulatory region binds.

Another feature of the PKC catalytic region that is essential to the viability of the kinase is its phosphorylation. The conventional and novel PKCs have three phosphorylation sites, termed: the activation loop, the turn motif, and the hydrophobic motif. The atypical PKCs are phosphorylated only on the activation loop and the turn motif. Phosphorylation of the hydrophobic motif is rendered unnecessary by the presence of a glutamic acid in place of a serine, which, as a negative charge, acts similar in manner to a phosphorylated residue. These phosphorylation events are essential for the activity of the enzyme, and 3-phosphoinositide-dependent protein kinase-1 (PDPK1) is the upstream kinase responsible for initiating the process by transphosphorylation of the activation loop. [6]

The consensus sequence of protein kinase C enzymes is similar to that of protein kinase A, since it contains basic amino acids close to the Ser/Thr to be phosphorylated. Their substrates are, e.g., MARCKS proteins, MAP kinase, transcription factor inhibitor IκB, the vitamin D 3 receptor VDR, Raf kinase, calpain, and the epidermal growth factor receptor.

Activation

Upon activation, protein kinase C enzymes are translocated to the plasma membrane by RACK proteins (membrane-bound receptor for activated protein kinase C proteins). This localization also gives the enzyme access to substrate, an activation mechanism termed substrate presentation. The protein kinase C enzymes are known for their long-term activation: They remain activated after the original activation signal or the Ca2+-wave is gone. It is presumed that this is achieved by the production of diacylglycerol from phosphatidylinositol by a phospholipase; fatty acids may also play a role in long-term activation. A critical part of PKC activation is translocation to the cell membrane. Interestingly, this process is disrupted in microgravity, which causes immunodeficiency of astronauts. [7]

Function

A multiplicity of functions have been ascribed to PKC. Recurring themes are that PKC is involved in receptor desensitization, in modulating membrane structure events, in regulating transcription, in mediating immune responses, in regulating cell growth, and in learning and memory. PKC isoforms have been designated "memory kinases," and deficits in PKC signaling in neurons is an early abnormality in the brains of patients with Alzheimer's disease. [8] These functions are achieved by PKC-mediated phosphorylation of other proteins. PKC plays an important role in the immune system through phosphorylation of CARD-CC family proteins and subsequent NF-κB activation. [9] However, the substrate proteins present for phosphorylation vary, since protein expression is different between different kinds of cells. Thus, effects of PKC are cell-type-specific:

Cell typeOrgan/systemActivators
ligandsGq-GPCRs
Effects
smooth muscle cell (gastrointestinal tract sphincters) digestive system contraction
smooth muscle cells in: Variouscontraction
smooth muscle cells in: sensory system acetylcholineM3 receptor contraction
smooth muscle cell (vascular) circulatory system
smooth muscle cell (seminal tract) [13] :163 [14] reproductive system ejaculation
smooth muscle cell (GI tract) digestive system
smooth muscle cell (bronchi) respiratory system bronchoconstriction [13] :187
proximal convoluted tubule cell kidney
  • stimulate NHE3 → H+ secretion & Na+ reabsorption [18]
  • stimulate basolateral Na-K ATPase → Na+ reabsorption [18]
neurons in autonomic ganglia nervous system acetylcholineM1 receptor EPSP
neurons in CNS nervous system
  • neuronal excitation (5-HT) [13] [19] :187
  • memory (glutamate) [20]
platelets circulatory system 5-HT5-HT2A receptor [13] :187aggregation [13] :187
ependymal cells (choroid plexus) ventricular system 5-HT5-HT2C receptor [13] :187  cerebrospinal fluid secretion [13] :187
heart muscle circulatory system positive ionotropic effect [11]
serous cells (salivary gland) digestive system
serous cells (lacrimal gland) digestive system
  •  secretion [13] :127
adipocyte digestive system/endocrine system
hepatocyte digestive system
sweat gland cells integumentary system
  •  secretion [11]
parietal cells digestive system acetylcholineM3 receptors [21] gastric acid secretion
lymphocyte immune system
myelocyte immune system

Pathology

Protein kinase C, activated by tumor promoter phorbol ester, may phosphorylate potent activators of transcription, and thus lead to increased expression of oncogenes, promoting cancer progression, [22] or interfere with other phenomena. Prolonged exposure to phorbol ester, however, promotes the down-regulation of Protein kinase C. Loss-of-function mutations [23] and low PKC protein levels [24] are prevalent in cancer, supporting a general tumor-suppressive role for Protein kinase C.

Protein kinase C enzymes are important mediators of vascular permeability and have been implicated in various vascular diseases including disorders associated with hyperglycemia in diabetes mellitus, as well as endothelial injury and tissue damage related to cigarette smoke. Low-level PKC activation is sufficient to reverse cell chirality through phosphatidylinositol 3-kinase/AKT signaling and alters junctional protein organization between cells with opposite chirality, leading to an unexpected substantial change in endothelial permeability, which often leads to inflammation and disease. [25]

Inhibitors

Protein kinase C inhibitors, such as ruboxistaurin, may potentially be beneficial in peripheral diabetic nephropathy. [26]

Chelerythrine is a natural selective PKC inhibitor. Other naturally occurring PKCIs are miyabenol C, myricitrin, gossypol.

Bryostatin 1 can act as a PKC inhibitor; It was investigated for cancer.

Darovasertib is an investigational new drug in efficacy trials in treatment of metastatic uveal melanoma. [27] [28]

Other PKCIs include Verbascoside, BIM-1, Ro31-8220, and Tamoxifen. [29]

Activators

The Protein kinase C activator ingenol mebutate, derived from the plant Euphorbia peplus , is FDA-approved for the treatment of actinic keratosis. [30] [31]

Bryostatin 1 can act as a PKCe activator and as of 2016 is being investigated for Alzheimer's disease. [32]

12-O-Tetradecanoylphorbol-13-acetate (PMA or TPA) is a diacylglycerol mimic that can activate the classical PKCs. It is often used together with ionomycin which provides the calcium-dependent signals needed for activation of some PKCs.

See also

Related Research Articles

<span class="mw-page-title-main">Protein kinase</span> Enzyme that adds phosphate groups to other proteins

A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a functional change of the target protein (substrate) by changing enzyme activity, cellular location, or association with other proteins. The human genome contains about 500 protein kinase genes and they constitute about 2% of all human genes. There are two main types of protein kinase. The great majority are serine/threonine kinases, which phosphorylate the hydroxyl groups of serines and threonines in their targets. Most of the others are tyrosine kinases, although additional types exist. Protein kinases are also found in bacteria and plants. Up to 30% of all human proteins may be modified by kinase activity, and kinases are known to regulate the majority of cellular pathways, especially those involved in signal transduction.

<span class="mw-page-title-main">Protein kinase A</span> Family of enzymes

In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.

<span class="mw-page-title-main">Phosphoinositide phospholipase C</span>

Phosphoinositide phospholipase C is a family of eukaryotic intracellular enzymes that play an important role in signal transduction processes. These enzymes belong to a larger superfamily of Phospholipase C. Other families of phospholipase C enzymes have been identified in bacteria and trypanosomes. Phospholipases C are phosphodiesterases.

<span class="mw-page-title-main">Platelet-derived growth factor receptor</span> Cell surface receptors

Platelet-derived growth factor receptors (PDGF-R) are cell surface tyrosine kinase receptors for members of the platelet-derived growth factor (PDGF) family. PDGF subunits -A and -B are important factors regulating cell proliferation, cellular differentiation, cell growth, development and many diseases including cancer. There are two forms of the PDGF-R, alpha and beta each encoded by a different gene. Depending on which growth factor is bound, PDGF-R homo- or heterodimerizes.

Ca<sup>2+</sup>/calmodulin-dependent protein kinase II Class of enzymes

Ca2+
/calmodulin-dependent protein kinase II
is a serine/threonine-specific protein kinase that is regulated by the Ca2+
/calmodulin complex. CaMKII is involved in many signaling cascades and is thought to be an important mediator of learning and memory. CaMKII is also necessary for Ca2+
homeostasis and reuptake in cardiomyocytes, chloride transport in epithelia, positive T-cell selection, and CD8 T-cell activation.

<span class="mw-page-title-main">Phosphorylase kinase</span>

Phosphorylase kinase (PhK) is a serine/threonine-specific protein kinase which activates glycogen phosphorylase to release glucose-1-phosphate from glycogen. PhK phosphorylates glycogen phosphorylase at two serine residues, triggering a conformational shift which favors the more active glycogen phosphorylase "a" form over the less active glycogen phosphorylase b.

The PHLPP isoforms are a pair of protein phosphatases, PHLPP1 and PHLPP2, that are important regulators of Akt serine-threonine kinases and conventional/novel protein kinase C (PKC) isoforms. PHLPP may act as a tumor suppressor in several types of cancer due to its ability to block growth factor-induced signaling in cancer cells.

<span class="mw-page-title-main">PKC alpha</span> Protein-coding gene in the species Homo sapiens

Protein kinase C alpha (PKCα) is an enzyme that in humans is encoded by the PRKCA gene.

<span class="mw-page-title-main">Protein kinase C zeta type</span> Mammalian protein found in Homo sapiens

Protein kinase C, zeta (PKCζ), also known as PRKCZ, is a protein in humans that is encoded by the PRKCZ gene. The PRKCZ gene encodes at least two alternative transcripts, the full-length PKCζ and an N-terminal truncated form PKMζ. PKMζ is thought to be responsible for maintaining long-term memories in the brain. The importance of PKCζ in the creation and maintenance of long-term potentiation was first described by Todd Sacktor and his colleagues at the SUNY Downstate Medical Center in 1993.

<span class="mw-page-title-main">PRKCD</span> Protein-coding gene in the species Homo sapiens

Protein kinase C delta type is an enzyme that in humans is encoded by the PRKCD gene.

<span class="mw-page-title-main">RPS6KA1</span> Enzyme

Ribosomal protein S6 kinase alpha-1 is an enzyme that in humans is encoded by the RPS6KA1 gene.

<span class="mw-page-title-main">PRKCQ</span> Protein-coding gene in the species Homo sapiens

Protein kinase C theta (PKC-θ) is an enzyme that in humans is encoded by the PRKCQ gene. PKC-θ, a member of serine/threonine kinases, is mainly expressed in hematopoietic cells with high levels in platelets and T lymphocytes, where plays a role in signal transduction. Different subpopulations of T cells vary in their requirements of PKC-θ, therefore PKC-θ is considered as a potential target for inhibitors in the context of immunotherapy.

<span class="mw-page-title-main">Inositol-trisphosphate 3-kinase</span> Class of enzymes

Inositol (1,4,5) trisphosphate 3-kinase (EC 2.7.1.127), abbreviated here as ITP3K, is an enzyme that facilitates a phospho-group transfer from adenosine triphosphate to 1D-myo-inositol 1,4,5-trisphosphate. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:1D-myo-inositol-1,4,5-trisphosphate 3-phosphotransferase. ITP3K catalyzes the transfer of the gamma-phosphate from ATP to the 3-position of inositol 1,4,5-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate. ITP3K is highly specific for the 1,4,5-isomer of IP3, and it exclusively phosphorylates the 3-OH position, producing Ins(1,3,4,5)P4, also known as inositol tetrakisphosphate or IP4.

<span class="mw-page-title-main">PRKCI</span> Protein-coding gene in the species Homo sapiens

Protein kinase C iota type is an enzyme that in humans is encoded by the PRKCI gene.

<span class="mw-page-title-main">Protein kinase D1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase D1 is an enzyme that in humans is encoded by the PRKD1 gene.

<span class="mw-page-title-main">PRKCH</span> Protein-coding gene in the species Homo sapiens

Protein kinase C eta type is an enzyme that in humans is encoded by the PRKCH gene.

<span class="mw-page-title-main">PRKD3</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase D3 (PKD3) or PKC-nu is an enzyme that in humans is encoded by the PRKD3 gene.

<span class="mw-page-title-main">BIM-1</span> Biological protein kinase C inhibitor

BIM-1 and the related compounds BIM-2, BIM-3, and BIM-8 are bisindolylmaleimide-based protein kinase C (PKC) inhibitors. These inhibitors also inhibit PDK1 explaining the higher inhibitory potential of LY33331 compared to the other BIM compounds a bisindolylmaleimide inhibitor toward PDK1.

The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other hormones.

<span class="mw-page-title-main">Mezerein</span> Chemical compound

Mezerein is a toxic diterpene ester found in the sap of Daphne mezereum and related plants. Plants of the genera Euphorbiaceae and Thymelaeaceae possess a wide variety of different phorbol esters, which share the capacity of mimicking diacylglycerol (DAG) and thus activating different isoforms of protein kinase C. Mezerein was first isolated in 1975. It has antileukemic properties in mice, but it is also defined as a weak promoter of skin cancers in the same species. All parts of the plants contain an acrid and irritant sap that contains mezerein, thought to be the principal poison. The sap is especially prevalent in the bark and berries.

References

  1. Wilson CH, Ali ES, Scrimgeour N, Martin AM, Hua J, Tallis GA, Rychkov GY, Barritt GJ (2015). "Steatosis inhibits liver cell store-operated Ca²⁺ entry and reduces ER Ca²⁺ through a protein kinase C-dependent mechanism". The Biochemical Journal. 466 (2): 379–90. doi:10.1042/BJ20140881. PMID   25422863.
  2. Ali ES, Hua J, Wilson CH, Tallis GA, Zhou FH, Rychkov GY, Barritt GJ (2016). "The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca2+ signalling in steatotic hepatocytes". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1863 (9): 2135–46. doi: 10.1016/j.bbamcr.2016.05.006 . PMID   27178543.
  3. Mellor H, Parker PJ (Jun 1998). "The extended protein kinase C superfamily". The Biochemical Journal. 332. 332 (Pt 2): 281–92. doi:10.1042/bj3320281. PMC   1219479 . PMID   9601053.
  4. Nishizuka Y (Apr 1995). "Protein kinase C and lipid signaling for sustained cellular responses". FASEB Journal. 9 (7): 484–96. doi: 10.1096/fasebj.9.7.7737456 . PMID   7737456. S2CID   31065063.
  5. Garcia-Concejo A, Larhammar D (2021). "Protein kinase C family evolution in jawed vertebrates". Dev Biol. 479: 77–90. doi: 10.1016/j.ydbio.2021.07.013 . PMID   34329618.
  6. Balendran A, Biondi RM, Cheung PC, Casamayor A, Deak M, Alessi DR (Jul 2000). "A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1". The Journal of Biological Chemistry. 275 (27): 20806–13. doi: 10.1074/jbc.M000421200 . PMID   10764742. S2CID   27535562.
  7. Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice; Thiel, Cora S.; Layer, Liliana E.; Ullrich, Oliver (2014-11-01). "T cell regulation in microgravity – The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities". Acta Astronautica. 104 (1): 365–377. Bibcode:2014AcAau.104..365H. doi: 10.1016/j.actaastro.2014.05.019 . ISSN   0094-5765.
  8. Sun M, Alkon DL (2014). "The "memory kinases": roles of PKC isoforms in signal processing and memory formation". Progress in Molecular Biology and Translational Science. 122: 31–59. doi:10.1016/B978-0-12-420170-5.00002-7. PMID   24484697.
  9. Staal, Jens; Driege, Yasmine; Haegman, Mira; Kreike, Marja; Iliaki, Styliani; Vanneste, Domien; Lork, Marie; Afonina, Inna S.; Braun, Harald; Beyaert, Rudi (2020-08-13). "Defining the combinatorial space of PKC::CARD-CC signal transduction nodes". The FEBS Journal. 288 (5): 1630–1647. doi:10.1111/febs.15522. ISSN   1742-4658. PMID   32790937. S2CID   221123226.
  10. 1 2 Biancani P, Harnett KM (2006). "Signal transduction in lower esophageal sphincter circular muscle, PART 1: Oral cavity, pharynx and esophagus". GI Motility Online. doi:10.1038/gimo24 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  11. 1 2 3 4 5 Fitzpatrick D, Purves D, Augustine G (2004). "Table 20:2". Neuroscience (Third ed.). Sunderland, Mass: Sinauer. ISBN   978-0-87893-725-7.
  12. Chou EC, Capello SA, Levin RM, Longhurst PA (Dec 2003). "Excitatory alpha1-adrenergic receptors predominate over inhibitory beta-receptors in rabbit dorsal detrusor". The Journal of Urology. 170 (6 Pt 1): 2503–7. doi:10.1097/01.ju.0000094184.97133.69. PMID   14634460.
  13. 1 2 3 4 5 6 7 8 9 10 11 Rang HP, Dale MM, Ritter JM, Moore PK (2003). "Ch. 10". Pharmacology (5th ed.). Elsevier Churchill Livingstone. ISBN   978-0-443-07145-4.
  14. Koslov DS, Andersson KE (2013-01-01). "Physiological and pharmacological aspects of the vas deferens—an update". Frontiers in Pharmacology. 4: 101. doi: 10.3389/fphar.2013.00101 . PMC   3749770 . PMID   23986701.
  15. Sanders KM (Jul 1998). "G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle". The American Journal of Physiology. 275 (1 Pt 1): G1-7. doi:10.1152/ajpgi.1998.275.1.G1. PMID   9655677.
  16. Parker K, Brunton L, Goodman LS, Lazo JS, Gilman A (2006). Goodman & Gilman's the pharmacological basis of therapeutics (11th ed.). New York: McGraw-Hill. p. 185. ISBN   978-0-07-142280-2.
  17. "Entrez Gene: CHRM1 cholinergic receptor, muscarinic 1".
  18. 1 2 Walter F. Boron (2005). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. ISBN   978-1-4160-2328-9. Page 787
  19. Barre A, Berthoux C, De Bundel D, Valjent E, Bockaert J, Marin P, Bécamel C (2016). "Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning". Proceedings of the National Academy of Sciences of the United States of America. 113 (10): E1382–91. Bibcode:2016PNAS..113E1382B. doi: 10.1073/pnas.1525586113 . PMC   4791007 . PMID   26903620.
  20. Jalil SJ, Sacktor TC, Shouval HZ (2015). "Atypical PKCs in memory maintenance: the roles of feedback and redundancy". Learning & Memory. 22 (7): 344–53. doi:10.1101/lm.038844.115. PMC   4478332 . PMID   26077687.
  21. Boron, Walter F. Medical Physiology.
  22. Yamasaki T, Takahashi A, Pan J, Yamaguchi N, Yokoyama KK (March 2009). "Phosphorylation of Activation Transcription Factor-2 at Serine 121 by Protein Kinase C Controls c-Jun-mediated Activation of Transcription". The Journal of Biological Chemistry. 284 (13): 8567–81. doi: 10.1074/jbc.M808719200 . PMC   2659215 . PMID   19176525.
  23. Antal CE, Hudson AM, Kang E, Zanca C, Wirth C, Stephenson NL, Trotter EW, Gallegos LL, Miller CJ, Furnari FB, Hunter T, Brognard J, Newton AC (January 2015). "Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor". Cell. 160 (3): 489–502. doi:10.1016/j.cell.2015.01.001. PMC   4313737 . PMID   25619690.
  24. Baffi TR, Van AN, Zhao W, Mills GB, Newton AC (March 2019). "Protein Kinase C Quality Control by Phosphatase PHLPP1 Unveils Loss-of-Function Mechanism in Cancer". Molecular Cell. 74 (2): 378–392.e5. doi:10.1016/j.molcel.2019.02.018. PMC   6504549 . PMID   30904392.
  25. Fan J, Ray P, Lu Y, Kaur G, Schwarz J, Wan L (24 October 2018). "Cell chirality regulates intercellular junctions and endothelial permeability". Science Advances. 4 (10): eaat2111. Bibcode:2018SciA....4.2111F. doi:10.1126/sciadv.aat2111. PMC   6200360 . PMID   30397640.
  26. Anderson PW, McGill JB, Tuttle KR (Sep 2007). "Protein kinase C beta inhibition: the promise for treatment of diabetic nephropathy". Current Opinion in Nephrology and Hypertension. 16 (5): 397–402. doi:10.1097/MNH.0b013e3281ead025. PMID   17693752. S2CID   72887329.
  27. Joshua, Anthony M.; O'day, Roderick; Glasson, William; Sia, David; McGrath, Lindsay; Ameratunga, Malaka; Cosman, Rasha; Cherepanoff, Svetlana; O'Quigley, Michael; Beaupre, Darrin M.; Conway, Max; Lim, Li-Anne; McKenzie, John; McKay, Daniel; Shackleton, Mark J.; Fung, Adrian; Isaacs, Timothy; Yousif, Jacob; Brooks, Christine; Psaroulis, Trifon (2024-06-01). "A phase 2 safety and efficacy study of neoadjuvant/adjuvant darovasertib for localized ocular melanoma". Journal of Clinical Oncology. 42 (16_suppl): 9510. doi:10.1200/JCO.2024.42.16_suppl.9510. ISSN   0732-183X.
  28. Cao, Lei; Chen, Shuzhen; Sun, Rainie; Ashby, Charles R.; Wei, Liuya; Huang, Zoufang; Chen, Zhe-Sheng (2023-07-28). "Darovasertib, a novel treatment for metastatic uveal melanoma". Frontiers in Pharmacology. 14. Frontiers Media SA. doi: 10.3389/fphar.2023.1232787 . ISSN   1663-9812. PMC   10419210 .
  29. Zarate, Carlos A.; Manji, Husseini K. (2009). "Protein Kinase C Inhibitors: Rationale for Use and Potential in the Treatment of Bipolar Disorder". CNS Drugs. 23 (7): 569–582. doi:10.2165/00023210-200923070-00003. ISSN   1172-7047. PMC   2802274 . PMID   19552485.
  30. Siller G, Gebauer K, Welburn P, Katsamas J, Ogbourne SM (Feb 2009). "PEP005 (ingenol mebutate) gel, a novel agent for the treatment of actinic keratosis: results of a randomized, double-blind, vehicle-controlled, multicentre, phase IIa study". The Australasian Journal of Dermatology. 50 (1): 16–22. doi:10.1111/j.1440-0960.2008.00497.x. PMID   19178487. S2CID   19308099.
  31. "FDA Approves Picato® (ingenol mebutate) Gel, the First and Only Topical Actinic Keratosis (AK) Therapy With 2 or 3 Consecutive Days of Once-Daily Dosing". eMedicine. Yahoo! Finance. January 25, 2012. Archived from the original on February 10, 2012. Retrieved 2012-02-14.
  32. Amended FDA Protocol Submitted for Phase 2b Trial of Advanced Alzheimer’s Therapy. Aug 2016