PRKACB

Last updated
PRKACB
Protein PRKACB PDB 1apm.png
Identifiers
Aliases PRKACB , PKA C-beta, PKACB, protein kinase cAMP-activated catalytic subunit beta, CAFD2
External IDs OMIM: 176892 MGI: 97594 HomoloGene: 121718 GeneCards: PRKACB
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001164198
NM_001164199
NM_001164200
NM_011100

RefSeq (protein)

NP_001157670
NP_001157671
NP_001157672
NP_035230

Location (UCSC) Chr 1: 84.08 – 84.24 Mb Chr 3: 146.44 – 146.52 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

cAMP-dependent protein kinase catalytic subunit beta is an enzyme that in humans is encoded by the PRKACB gene. [5]

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the protein kinase A (PKA), which transduces the signal through phosphorylation of different target proteins. The inactive holoenzyme of PKA is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits of PKA have been identified in humans. The protein encoded by this gene is a member of the serine/threonine protein kinase family and is a catalytic subunit of PKA. Three alternatively spliced transcript variants encoding distinct isoforms have been observed. [5]

Interactions

PRKACB has been shown to interact with Ryanodine receptor 2 [6] and Low affinity nerve growth factor receptor. [7]

Related Research Articles

<span class="mw-page-title-main">Protein kinase A</span> Family of enzymes

In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.

Biological crosstalk refers to instances in which one or more components of one signal transduction pathway affects another. This can be achieved through a number of ways with the most common form being crosstalk between proteins of signaling cascades. In these signal transduction pathways, there are often shared components that can interact with either pathway. A more complex instance of crosstalk can be observed with transmembrane crosstalk between the extracellular matrix (ECM) and the cytoskeleton.

<span class="mw-page-title-main">Phosphorylase kinase</span>

Phosphorylase kinase (PhK) is a serine/threonine-specific protein kinase which activates glycogen phosphorylase to release glucose-1-phosphate from glycogen. PhK phosphorylates glycogen phosphorylase at two serine residues, triggering a conformational shift which favors the more active glycogen phosphorylase “a” form over the less active glycogen phosphorylase b.

<span class="mw-page-title-main">PRKACA</span> Protein-coding gene in the species Homo sapiens

The catalytic subunit α of protein kinase A is a key regulatory enzyme that in humans is encoded by the PRKACA gene. This enzyme is responsible for phosphorylating other proteins and substrates, changing their activity. Protein kinase A catalytic subunit is a member of the AGC kinase family, and contributes to the control of cellular processes that include glucose metabolism, cell division, and contextual memory. PKA Cα is part of a larger protein complex that is responsible for controlling when and where proteins are phosphorylated. Defective regulation of PKA holoenzyme activity has been linked to the progression of cardiovascular disease, certain endocrine disorders and cancers.

<span class="mw-page-title-main">PRKAR1A</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type I-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR1A gene.

<span class="mw-page-title-main">PRKAR2A</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR2A gene.

<span class="mw-page-title-main">Protein kinase, AMP-activated, alpha 1</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase catalytic subunit alpha-1 is an enzyme that in humans is encoded by the PRKAA1 gene.

<span class="mw-page-title-main">PRKAB1</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit beta-1 is an enzyme that in humans is encoded by the PRKAB1 gene.

<span class="mw-page-title-main">PRKAR2B</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type II-beta regulatory subunit is an enzyme that in humans is encoded by the PRKAR2B gene.

<span class="mw-page-title-main">PRKAG2</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit gamma-2 is an enzyme that in humans is encoded by the PRKAG2 gene.

<span class="mw-page-title-main">PIK3CB</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta isoform is an enzyme that in humans is encoded by the PIK3CB gene.

<span class="mw-page-title-main">AKAP5</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 5 is a protein that in humans is encoded by the AKAP5 gene.

<span class="mw-page-title-main">PRKD3</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase D3 (PKD3) or PKC-nu is an enzyme that in humans is encoded by the PRKD3 gene.

<span class="mw-page-title-main">PRKAG1</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit gamma-1 is an enzyme that in humans is encoded by the PRKAG1 gene.

<span class="mw-page-title-main">PRKAR1B</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type I-beta regulatory subunit is an enzyme that in humans is encoded by the PRKAR1B gene.

<span class="mw-page-title-main">AKAP1</span> Protein-coding gene in the species Homo sapiens

A kinase anchor protein 1, mitochondrial is an enzyme that in humans is encoded by the AKAP1 gene.

<span class="mw-page-title-main">PRKAB2</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit beta-2 is an enzyme that in humans is encoded by the PRKAB2 gene.

<span class="mw-page-title-main">PRKACG</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase catalytic subunit gamma is an enzyme that in humans is encoded by the PRKACG gene.

<span class="mw-page-title-main">PKIA</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase inhibitor alpha is a protein that in humans is encoded by the PKIA gene.

In the field of molecular biology, the cAMP-dependent pathway, also known as the adenylyl cyclase pathway, is a G protein-coupled receptor-triggered signaling cascade used in cell communication.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000142875 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000005034 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: PRKACB protein kinase, cAMP-dependent, catalytic, beta".
  6. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks A R (May 2000). "PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts". Cell. UNITED STATES. 101 (4): 365–76. doi: 10.1016/S0092-8674(00)80847-8 . ISSN   0092-8674. PMID   10830164. S2CID   6496567.
  7. Higuchi H, Yamashita Toshihide, Yoshikawa Hideki, Tohyama Masaya (April 2003). "PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts". EMBO J. England. 22 (8): 1790–800. doi:10.1093/emboj/cdg177. ISSN   0261-4189. PMC   154469 . PMID   12682012.

Further reading