ARAF

Last updated

ARAF
Protein ARAF PDB 1wxm.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ARAF , A-Raf proto-oncogene, serine/threonine kinase, A-RAF, ARAF1, PKS2, RAFA1, Serine/threonine-protein kinase A-Raf
External IDs OMIM: 311010; MGI: 88065; HomoloGene: 1249; GeneCards: ARAF; OMA:ARAF - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001256196
NM_001256197
NM_001654

NM_001159645
NM_009703

RefSeq (protein)

NP_001243125
NP_001243126
NP_001645
NP_001243125.1

NP_001153117
NP_033833

Location (UCSC) Chr X: 47.56 – 47.57 Mb Chr X: 20.66 – 20.73 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Serine/threonine-protein kinase A-Raf, or simply A-Raf, is an enzyme that in humans is encoded by the ARAF gene. [5] It belongs to the Raf kinase family of serine/threonine-specific protein kinases, which also includes Raf-1 and B-Raf. [6] A-Raf is involved in the MAPK/ERK pathway, where it contributes to cell signaling processes that regulate proliferation, survival, and differentiation. Compared to Raf-1 and B-Raf, A-Raf is less well studied and exhibits distinct structural and regulatory features, including low kinase activity and alternative splicing in cancer. In addition to its role in MAPK signaling, A-Raf has functions in apoptosis suppression, cancer metabolism, and endocytic trafficking.

Contents

Structure

A-Raf, a member of the Raf kinase family, shares a conserved domain architecture with B-Raf and C-Raf, comprising three conserved regions: CR1, CR2, and CR3.

The RBD adopts a ubiquitin-like fold critical for Ras-GTP interaction. [14] , while the CRD's zinc-binding motif stabilizes membrane association. [15] A-Raf's activity is regulated by phosphorylation-dependent 14-3-3 binding. [16] and isoform dimerization, which is essential for MAPK pathway activation. [17] [18]

Function

A-Raf shares the canonical role of Raf kinases in the MAPK signaling cascade. Upon activation by Ras, A-Raf translocates from the cytosol to the plasma membrane, where it phosphorylates and activates MEK proteins. This activation leads to downstream ERK signaling and promotes cell cycle progression and proliferation. [19]

Among the Raf isoforms, A-Raf exhibits the lowest kinase activity toward MEK proteins. [20] This may be due to amino acid substitutions in a negatively charged region upstream of the kinase domain (the N-region), which result in low basal activity. [21]

A-Raf is also the only Raf kinase known to be regulated by steroid hormones. [22] In its inactive form, A-Raf is bound to 14-3-3 proteins in the cytosol; activation by Ras causes its translocation to the plasma membrane.

Beyond the MAPK pathway, A-Raf has additional functions. It inhibits MST2, a proapoptotic kinase, thereby suppressing apoptosis. This inhibitory activity is dependent on the expression of full-length A-Raf protein, which is maintained by the splicing factor hnRNP H. [23]

A-Raf also regulates energy metabolism by interacting with pyruvate kinase M2 (PKM2), a key enzyme in cancer cell glycolysis. By promoting a conformational shift from the dimeric to the tetrameric form of PKM2, A-Raf enhances its enzymatic activity and shifts glucose utilization from biosynthesis toward energy production. [24]

In addition, A-Raf has been implicated in endocytic membrane trafficking. Upon activation by receptor tyrosine kinases and Ras, A-Raf localizes to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-rich membranes and signals to endosomes, leading to activation of ARF6, a key regulator of endocytosis. [25]

Clinical significance

A-Raf may contribute to tumorigenesis through multiple mechanisms. In cancer cells, overexpression of hnRNP H enhances the production of full-length A-Raf, which inhibits MST2 and prevents apoptosis. The downregulation of hnRNP H, in contrast, leads to alternative splicing of the ARAF gene and loss of this anti-apoptotic activity. [26]

A-Raf’s regulation of PKM2 activity further links it to cancer metabolism. By promoting glycolytic flux toward pyruvate and lactate production, A-Raf may help sustain the high energy demands of rapidly proliferating tumor cells. [27]

Because A-Raf modulates both apoptosis and metabolism—two critical hallmarks of cancer—it may represent a potential target for future cancer therapies.

Interactions

ARAF has been shown to interact with:

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000078061 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000001127 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: ARAF V-raf murine sarcoma 3611 viral oncogene homolog".
  6. Mark GE, Seeley TW, Shows TB, Mountz JD (September 1986). "Pks, a raf-related sequence in humans". Proceedings of the National Academy of Sciences of the United States of America. 83 (17): 6312–6316. Bibcode:1986PNAS...83.6312M. doi: 10.1073/pnas.83.17.6312 . PMC   386493 . PMID   3529082.
  7. Tran TH, Chan AH, Young LC, Bindu L, Neale C, Messing S, et al. (February 2021). "KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation". Nature Communications. 12 (1): 1176. Bibcode:2021NatCo..12.1176T. doi:10.1038/s41467-021-21422-x. PMC   7895934 . PMID   33608534.
  8. Mott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM, Campbell SL (August 1996). "The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site". Proceedings of the National Academy of Sciences of the United States of America. 93 (16): 8312–8317. Bibcode:1996PNAS...93.8312M. doi: 10.1073/pnas.93.16.8312 . PMC   38667 . PMID   8710867.
  9. Tran TH, Chan AH, Young LC, Bindu L, Neale C, Messing S, et al. (February 2021). "KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation". Nature Communications. 12 (1): 1176. Bibcode:2021NatCo..12.1176T. doi:10.1038/s41467-021-21422-x. PMC   7895934 . PMID   33608534.
  10. Light Y, Paterson H, Marais R (July 2002). "14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity". Molecular and Cellular Biology. 22 (14): 4984–4996. doi:10.1128/MCB.22.14.4984-4996.2002. PMC   139778 . PMID   12077328.
  11. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (April 1997). "Exact and approximate rebinning algorithms for 3-D PET data". IEEE Transactions on Medical Imaging. 16 (2): 145–158. doi:10.1109/42.563660. PMID   9101324.
  12. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (April 1997). "Exact and approximate rebinning algorithms for 3-D PET data". IEEE Transactions on Medical Imaging. 16 (2): 145–158. doi:10.1109/42.563660. PMID   9101324.
  13. Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T (July 2004). "ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth". Journal of Cell Science. 117 (Pt 15): 3319–3329. doi:10.1242/jcs.01183. PMID   15226403.
  14. Tran TH, Chan AH, Young LC, Bindu L, Neale C, Messing S, et al. (February 2021). "KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation". Nature Communications. 12 (1): 1176. Bibcode:2021NatCo..12.1176T. doi:10.1038/s41467-021-21422-x. PMC   7895934 . PMID   33608534.
  15. Mott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM, Campbell SL (August 1996). "The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site". Proceedings of the National Academy of Sciences of the United States of America. 93 (16): 8312–8317. Bibcode:1996PNAS...93.8312M. doi: 10.1073/pnas.93.16.8312 . PMC   38667 . PMID   8710867.
  16. Light Y, Paterson H, Marais R (July 2002). "14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity". Molecular and Cellular Biology. 22 (14): 4984–4996. doi:10.1128/MCB.22.14.4984-4996.2002. PMC   139778 . PMID   12077328.
  17. Rimmer A (June 2018). "Overseas doctors must not be used just to fill rota gaps, says leading consultant". BMJ. 361: k2654. doi:10.1136/bmj.k2654. PMID   29907696.
  18. Rushworth LK, Hindley AD, O'Neill E, Kolch W (March 2006). "Regulation and role of Raf-1/B-Raf heterodimerization". Molecular and Cellular Biology. 26 (6): 2262–2272. doi:10.1128/MCB.26.6.2262-2272.2006. PMC   1430271 . PMID   16508002.
  19. Mercer K, Giblett S, Oakden A, Brown J, Marais R, Pritchard C (2005-04-25). "A-Raf and Raf-1 work together to influence transient ERK phosphorylation and Gl/S cell cycle progression". Oncogene. 24 (33): 5207–5217. doi: 10.1038/sj.onc.1208707 . ISSN   0950-9232. PMID   15856007.
  20. Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, et al. (2011-03-01). "Raf Family Kinases Old Dogs Have Learned New Tricks". Genes & Cancer. 2 (3): 232–260. doi:10.1177/1947601911407323. ISSN   1947-6019. PMC   3128629 . PMID   21779496.
  21. Baljuls A, Mueller T, Drexler HC, Hekman M, Rapp UR (2007-09-07). "Unique N-region determines low basal activity and limited inducibility of A-RAF kinase: the role of N-region in the evolutionary divergence of RAF kinase function in vertebrates". The Journal of Biological Chemistry. 282 (36): 26575–26590. doi: 10.1074/jbc.M702429200 . ISSN   0021-9258. PMID   17613527.
  22. Lee JE, Beck TW, Wojnowski L, Rapp UR (1996-04-18). "Regulation of A-raf expression". Oncogene. 12 (8): 1669–1677. ISSN   0950-9232. PMID   8622887.
  23. Rauch J, O'Neill E, Mack B, Matthias C, Munz M, Kolch W, et al. (2010-02-15). "Heterogeneous Nuclear Ribonucleoprotein H Blocks MST2-Mediated Apoptosis in Cancer Cells by Regulating a-raf Transcription". Cancer Research. 70 (4): 1679–1688. doi:10.1158/0008-5472.CAN-09-2740. ISSN   0008-5472. PMC   2880479 . PMID   20145135.
  24. Mazurek S, Drexler HC, Troppmair J, Eigenbrodt E, Rapp UR (2007-11-01). "Regulation of Pyruvate Kinase Type M2 by A-Raf: A Possible Glycolytic Stop or Go Mechanism". Anticancer Research. 27 (6B): 3963–3971. ISSN   0250-7005. PMID   18225557.
  25. Nekhoroshkova E, Albert S, Becker M, Rapp UR (2009-02-27). "A-RAF Kinase Functions in ARF6 Regulated Endocytic Membrane Traffic". PLOS ONE. 4 (2): e4647. Bibcode:2009PLoSO...4.4647N. doi: 10.1371/journal.pone.0004647 . ISSN   1932-6203. PMC   2645234 . PMID   19247477.
  26. Rauch J, O'Neill E, Mack B, Matthias C, Munz M, Kolch W, et al. (2010-02-15). "Heterogeneous Nuclear Ribonucleoprotein H Blocks MST2-Mediated Apoptosis in Cancer Cells by Regulating a-raf Transcription". Cancer Research. 70 (4): 1679–1688. doi:10.1158/0008-5472.CAN-09-2740. ISSN   0008-5472. PMC   2880479 . PMID   20145135.
  27. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. (2008-03-13). "The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth". Nature. 452 (7184): 230–233. Bibcode:2008Natur.452..230C. doi:10.1038/nature06734. ISSN   0028-0836. PMID   18337823. S2CID   16111842.
  28. 1 2 3 4 5 Yuryev A, Wennogle LP (February 2003). "Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid analysis". Genomics. 81 (2): 112–125. doi:10.1016/S0888-7543(02)00008-3. PMID   12620389.
  29. Yin XL, Chen S, Yan J, Hu Y, Gu JX (February 2002). "Identification of interaction between MEK2 and A-Raf-1". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1589 (1): 71–76. doi: 10.1016/S0167-4889(01)00188-4 . PMID   11909642.
  30. 1 2 3 Yuryev A, Ono M, Goff SA, Macaluso F, Wennogle LP (July 2000). "Isoform-Specific Localization of A-RAF in Mitochondria". Molecular and Cellular Biology. 20 (13): 4870–4878. doi:10.1128/MCB.20.13.4870-4878.2000. PMC   85938 . PMID   10848612.
  31. Yin XL, Chen S, Gu JX (February 2002). "Identification of TH1 as an interaction partner of A-Raf kinase". Molecular and Cellular Biochemistry. 231 (1–2): 69–74. doi:10.1023/A:1014437024129. PMID   11952167. S2CID   19362635.

Further reading