Kalirin, also known as Huntingtin-associated protein-interacting protein (HAPIP), protein duo (DUO), or serine/threonine-protein kinase with Dbl- and pleckstrin homology domain, is a protein that in humans is encoded by the KALRN gene. [5] [6] Kalirin was first identified in 1997 as a protein interacting with huntingtin-associated protein 1. [5] Is also known to play an important role in nerve growth and axonal development. [7]
Kalirin is a member of the Dbl family of proteins and is a Rho guanine nucleotide exchange factor.
It is named after the multiple-handed Hindu goddess Kali for its ability to interact with numerous other proteins. Kalirin's other name, DUO, comes from the fact that it is 98% identical to rat DUO protein and 80.6% identical to a human protein named TRIO. Unlike TRIO, which is expressed in numerous tissues, Kalirin isoforms are mainly found in the brain.
Several isoforms of Kalirin are produced through alternative splicing. [8] One of the isoforms, Kalirin-7, was found to be necessary for the remodeling of synapses in mature cortical neurons and is thought to be important in the development of schizophrenia, [9] [10] [11] [12] as demonstrated by adolescent development of schizophrenia-like symptoms in kalirin knockout mice. [13] Alzheimer's disease may also be linked to kalirin-7. [12] [14] [15]
The KALRN gene, has been linked to multiple neurological disorders both through large exome and genome sequencing efforts, as well as post mortem and clinical studies.
Several mutations within KALRN have been linked to neurological disease. In autism spectrum disorder a frameshift mutation was found [16] [17] that is likely to lead to transcript decay, and heterozygosity. Another, found within the second GEF domain, is predicted to be highly deleterious to RhoA-GEF activity and likely affects the function of kalirin9 and 12 isoforms early in neuronal development. [18] A patient harboring a homozygous mutation in kalirin's spectrin repeat domain was found to have severe intellectual disability, [19] and both truncating and missense mutations have been identified in patients with developmental delay. [20] Several intronic variants have been associated with addiction and were found to alter the function of brain regions responsible for reward anticipation. [21] This link to addiction is supported by animal models, where loss of kalirin results in altered cocaine self-administration and synaptic and expression changes in response to cocaine. [22] [23] [24] Perhaps the most compelling genetic links are between kalirin and schizophrenia. Numerous missense mutations in KALRN have been identified in exome sequencing studies of schizophrenia cohorts [25] that are predicted to be deleterious to protein function.
Neuronal studies have provided insight into the mechanisms of some missense mutations, particularly within the GEF domains of KALRN. A mutation found within the Rac-GEF domain was found to induce strong reductions in Rac activation, neuronal branching and spine density. [26] These effects were mirrored by mutations in the RhoA-GEF domain, producing similar neuronal deficits, but by promoting RhoA-GEF activity. [27] In addition to exome sequencing, post-mortem studies have consistently found alterations in kalirin transcript levels within the brain [28] [29] further supporting a role for kalirin in the etiology of schizophrenia.
In addition to neurodevelopmental disorders, kalirin has been found to be underexpressed in the post-mortem Alzheimer's brain. [15] [14] This loss of kalirin expression was recapitulated in animal models of Alzheimer's disease. [30] [31] Moreover, introduction of kalirin7 into culture [32] or animal models [31] of Alzheimer's disease was able to rescue synaptic and behavioral deficits, suggesting an important role for kalirin in regulating synapse loss and cognitive impairment in Alzheimer's disease.
The majority of kalirin's effects are induced through its catalytic GEF domain signaling. By promoting the release of GDP from Rac and RhoA, it acts as an activator of GTPase signaling within the cell. [33] Although able to activate Rac and RhoA, much of its activity in regulating neuronal morphology has been attributed to Rac-PAK pathway activation. [34] kalirin has found been found to exert control over dendritic arborization, [35] axonal growth, [33] [36] dendritic spine formation [37] and synaptic activity [38] [13] and plasticity. [38] [39] [40] [41] These effects are regulated by protein-protein interactions and post-translational modifications within the non-catalytic domains, and have been shown to exert control over kalirin subcellular targeting and activation. [38] [37] [42]
Kalirin has been found to play a critical role in synaptic activity and plasticity. Loss of KALRN results in decreased nMDAr and AMPAr-mediated mEPSC, [13] and kalirin7 knockout animals show strong deficits in NMDAr mediated long term potentiation [13] [40] and long term depression. [39] This may be linked to the ability to regulate RAC-PAK signaling and actin dynamics, which in turn can regulate the size and density of dendritic spines. [13] Within dendritic spines, kalirin interacts with multiple disease related proteins to regulate synapse strength. It directly interacts with the schizophrenia risk factor DISC1 that can act to suppress kalirin function within the spine. [43] Furthermore, kalirin7 directly interacts with the GluN2B subunit of the NMDA receptor [40] and PSD95 [44] within the post-synaptic density.
The importance of KALRN in neurodevelopment is supported by knockout animal models that display profound deficiencies in multiple behavioral tasks. Kalirin knockout animals display reduced GEF activity, [13] dendritic arborization and spine density. [45] These deficits may be linked to the observed reductions in prepulse inhibition, sociability and increased locomotor activity. Notably, loss of kalirin results in deficits in working memory, but not reference memory. [13] [46] The generation of a kalirin7 specific knockout animal model revealed similar deficits in spine density, [46] [47] suggesting a central role of kalirin7 in regulating neuronal connectivity. Both full and kalirin7 specific knockout animals show decreased anxiety-like behavior and impaired contextual fear learning. [47] [48] [10]
Multiple isoforms, arising from alternate splicing and promoter usage, display varying tissue and developmental expression. [49] [50] Control over kalirin expression is exerted through the use of alternate promoters which produce alternate start sites and restrict expression to specific neuronal subpopulations, and alter kalirin activity within neurons. [51] [52] During early development, the long kalirin9 and 12 isoforms are predominant in the brain. These isoforms contain both a Rac and a RhoA selective GEF domain, and control axonal growth and dendritic branching. Kalirin9 and 12 are also expressed ubiquitously throughout the body [53] and have functions outwith the brain. However, during neurodevelopment the kalirin7 isoform is preferentially expressed during periods of synaptogenesis, and this isoform displays highly restricted cortical expression. [53] [54] Kalirin7 expresses only the N-terminal domains, including the Rac-GEF domain along with a c-terminal PDZ-binding domain that strongly targets kalirin7 to the post-synaptic density. [44] It is likely this subcellular distribution is vital to kalirin7 function, as this isoform exerts control dendritic spine density and synaptic plasticity. It is likely that mutations that result in deregulation of kalirin function within the brain is responsible for the role of kalirin within multiple neurological disorders.
The 2020 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as: Euan Parnell; Lauren P Shapiro; Roos Voorn; Marc P Forrest; Hiba A Jalloul; Daniel D Loizzo; Peter Penzes (12 November 2020). "KALRN: a central regulator of synaptic function and synaptopathies". Gene . Gene Wiki Review Series: 145306. doi:10.1016/J.GENE.2020.145306. ISSN 0378-1119. PMC 7803032 . PMID 33189799. Wikidata Q102060922. |
A dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical signals to the neuron's cell body. Most spines have a bulbous head, and a thin neck that connects the head of the spine to the shaft of the dendrite. The dendrites of a single neuron can contain hundreds to thousands of spines. In addition to spines providing an anatomical substrate for memory storage and synaptic transmission, they may also serve to increase the number of possible contacts between neurons. It has also been suggested that changes in the activity of neurons have a positive effect on spine morphology.
In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory.
Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein that, in humans, is encoded by the BDNF gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canonical nerve growth factor (NGF), a family which also includes NT-3 and NT-4/NT-5. Neurotrophic factors are found in the brain and the periphery. BDNF was first isolated from a pig brain in 1982 by Yves-Alain Barde and Hans Thoenen.
Immediate early genes (IEGs) are genes which are activated transiently and rapidly in response to a wide variety of cellular stimuli. They represent a standing response mechanism that is activated at the transcription level in the first round of response to stimuli, before any new proteins are synthesized. IEGs are distinct from "late response" genes, which can only be activated later, following the synthesis of early response gene products. Thus IEGs have been called the "gateway to the genomic response". The term can describe viral regulatory proteins that are synthesized following viral infection of a host cell, or cellular proteins that are made immediately following stimulation of a resting cell by extracellular signals.
Synaptogenesis is the formation of synapses between neurons in the nervous system. Although it occurs throughout a healthy person's lifespan, an explosion of synapse formation occurs during early brain development, known as exuberant synaptogenesis. Synaptogenesis is particularly important during an individual's critical period, during which there is a certain degree of synaptic pruning due to competition for neural growth factors by neurons and synapses. Processes that are not used, or inhibited during their critical period will fail to develop normally later on in life.
The tau proteins are a group of six highly soluble protein isoforms produced by alternative splicing from the gene MAPT. They have roles primarily in maintaining the stability of microtubules in axons and are abundant in the neurons of the central nervous system (CNS), where the cerebral cortex has the highest abundance. They are less common elsewhere but are also expressed at very low levels in CNS astrocytes and oligodendrocytes.
Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (N-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the SNAP25 gene found on chromosome 20p12.2 in humans. SNAP-25 is a component of the trans-SNARE complex, which accounts for membrane fusion specificity and directly executes fusion by forming a tight complex that brings the synaptic vesicle and plasma membranes together.
Protocadherins (Pcdhs) are the largest mammalian subgroup of the cadherin superfamily of homophilic cell-adhesion proteins. They were discovered by Shintaro Suzuki's group, when they used PCR to find new members of the cadherin family. The PCR fragments that corresponded to protocadherins were found in vertebrate and invertebrate species. This prevalence in a wide range of species suggested that the fragments were part of an ancient cadherin and were thus termed "Protocadherins" as the "first cadherins". Of the approximately 70 Pcdh genes identified in mammalian genomes, over 50 are located in tightly linked gene clusters on the same chromosome. Until recently, it was assumed that this kind of organization can only be found in vertebrates, but Octopus bimaculoides has 168 genes of which nearly three-quarters are found in tandem clusters with the two largest clusters compromising 31 and 17 genes, respectively.
Neuregulin 1, or NRG1, is a gene of the epidermal growth factor family that in humans is encoded by the NRG1 gene. NRG1 is one of four proteins in the neuregulin family that act on the EGFR family of receptors. Neuregulin 1 is produced in numerous isoforms by alternative splicing, which allows it to perform a wide variety of functions. It is essential for the normal development of the nervous system and the heart.
CX-614 is an ampakine drug developed by Cortex Pharmaceuticals. It has been investigated for its effect on AMPA receptors.
Homer protein homolog 1 or Homer1 is a neuronal protein that in humans is encoded by the HOMER1 gene. Other names are Vesl and PSD-Zip45.
Synaptic Ras GTPase-activating protein 1, also known as synaptic Ras-GAP 1 or SYNGAP1, is a protein that in humans is encoded by the SYNGAP1 gene. SYNGAP1 is a ras GTPase-activating protein that is critical for the development of cognition and proper synapse function. Mutations in humans can cause intellectual disability, epilepsy, autism and sensory processing deficits.
Neurabin-2 is a protein that in humans is encoded by the PPP1R9B gene.
Brain mitochondrial carrier protein 1 is a protein that in humans is encoded by the SLC25A14 gene.
Synaptogyrin-1 is a protein that in humans is encoded by the SYNGR1 gene.
Dedicator of cytokinesis protein 4 (Dock4), is a large protein encoded in the human by the DOCK4 gene, involved in intracellular signalling networks. It is a member of the DOCK-B subfamily of the DOCK family of guanine nucleotide exchange factors (GEFs) which function as activators of small G-proteins. Dock4 activates the small G proteins Rac and Rap1.
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience; hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules during increased neuronal activity.
Long-term potentiation (LTP), thought to be the cellular basis for learning and memory, involves a specific signal transmission process that underlies synaptic plasticity. Among the many mechanisms responsible for the maintenance of synaptic plasticity is the cadherin–catenin complex. By forming complexes with intracellular catenin proteins, neural cadherins (N-cadherins) serve as a link between synaptic activity and synaptic plasticity, and play important roles in the processes of learning and memory.
Memory allocation is a process that determines which specific synapses and neurons in a neural network will store a given memory. Although multiple neurons can receive a stimulus, only a subset of the neurons will induce the necessary plasticity for memory encoding. The selection of this subset of neurons is termed neuronal allocation. Similarly, multiple synapses can be activated by a given set of inputs, but specific mechanisms determine which synapses actually go on to encode the memory, and this process is referred to as synaptic allocation. Memory allocation was first discovered in the lateral amygdala by Sheena Josselyn and colleagues in Alcino J. Silva's laboratory.
Synaptic stabilization is crucial in the developing and adult nervous systems and is considered a result of the late phase of long-term potentiation (LTP). The mechanism involves strengthening and maintaining active synapses through increased expression of cytoskeletal and extracellular matrix elements and postsynaptic scaffold proteins, while pruning less active ones. For example, cell adhesion molecules (CAMs) play a large role in synaptic maintenance and stabilization. Gerald Edelman discovered CAMs and studied their function during development, which showed CAMs are required for cell migration and the formation of the entire nervous system. In the adult nervous system, CAMs play an integral role in synaptic plasticity relating to learning and memory.