Bone morphogenetic protein receptor type-1B also known as CDw293 (cluster of differentiation w293) is a protein that in humans is encoded by the BMPR1B gene. [5] [6]
BMPR1B is a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. [7]
The BMPR1B receptor plays a role in the formation of middle and proximal phalanges. [8]
Mutations in this gene have been associated with primary pulmonary hypertension. [7]
In the chick embryo, it has been shown that BMPR1B is found in precartilaginous condensations. [9] BMPR1B is the major transducer of signals in these condensations as demonstrated in experiments using constitutively active BMPR1B receptors. [9] BMPR1B is a more effective transducer of GDF5 than BMPR1A. [9] Unlike BMPR1A null mice, which die at an early embryonic stage, BMPR1B null mice are viable. [9]
Bone morphogenetic protein 2 or BMP-2 belongs to the TGF-β superfamily of proteins.
Bone morphogenetic protein 4 is a protein that in humans is encoded by BMP4 gene. BMP4 is found on chromosome 14q22-q23.
Mothers against decapentaplegic homolog 1 also known as SMAD family member 1 or SMAD1 is a protein that in humans is encoded by the SMAD1 gene.
Mothers against decapentaplegic homolog 5 also known as SMAD5 is a protein that in humans is encoded by the SMAD5 gene.
Mothers against decapentaplegic homolog 9 also known as SMAD9, SMAD8, and MADH6 is a protein that in humans is encoded by the SMAD9 gene.
The transforming growth factor beta (TGFB) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, cell migration, apoptosis, cellular homeostasis and other cellular functions. The TGFB signaling pathways are conserved. In spite of the wide range of cellular processes that the TGFβ signaling pathway regulates, the process is relatively simple. TGFβ superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs) which can now bind the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression.
Bone morphogenetic protein receptor type II or BMPR2 is a serine/threonine receptor kinase encoded by the BMPR2 gene. It binds bone morphogenetic proteins, members of the TGF beta superfamily of ligands, which are involved in paracrine signaling. BMPs are involved in a host of cellular functions including osteogenesis, cell growth and cell differentiation. Signaling in the BMP pathway begins with the binding of a BMP to the type II receptor. This causes the recruitment of a BMP type I receptor, which the type II receptor phosphorylates. The type I receptor phosphorylates an R-SMAD, a transcriptional regulator.
Bone morphogenetic protein type I receptors are single pass, type I transmembrane proteins. They belong to a class of receptor serine/threonine kinases that bind members of the TGF beta superfamily of ligands—the bone morphogenetic proteins.
The bone morphogenetic protein receptor, type IA also known as BMPR1A is a protein which in humans is encoded by the BMPR1A gene. BMPR1A has also been designated as CD292.
Activin receptor type-1B is a protein that in humans is encoded by the ACVR1B gene.
Activin A receptor, type I (ACVR1) is a protein which in humans is encoded by the ACVR1 gene; also known as ALK-2. ACVR1 has been linked to the 2q23-24 region of the genome. This protein is important in the bone morphogenic protein (BMP) pathway which is responsible for the development and repair of the skeletal system. While knock-out models with this gene are in progress, the ACVR1 gene has been connected to fibrodysplasia ossificans progressiva, an extremely rare progressive genetic disease characterized by heterotopic ossification of muscles, tendons and ligaments. It is a bone morphogenetic protein receptor, type 1.
Activin receptor type-2A is a protein that in humans is encoded by the ACVR2A gene. ACVR2A is an activin type 2 receptor.
Bone morphogenetic protein receptors are serine-threonine kinase receptors. Transforming growth factor beta family proteins bind to these receptors. There are four bone morphogenetic protein receptors:
Endoglin (ENG) is a type I membrane glycoprotein located on cell surfaces and is part of the TGF beta receptor complex. It is also commonly referred to as CD105, END, FLJ41744, HHT1, ORW and ORW1. It has a crucial role in angiogenesis, therefore, making it an important protein for tumor growth, survival and metastasis of cancer cells to other locations in the body.
Transforming growth factor beta receptor I is a membrane-bound TGF beta receptor protein of the TGF-beta receptor family for the TGF beta superfamily of signaling ligands. TGFBR1 is its human gene.
Growth differentiation factor 2 (GDF2) also known as bone morphogenetic protein (BMP)-9 is a protein that in humans is encoded by the GDF2 gene. GDF2 belongs to the transforming growth factor beta superfamily.
Growth/differentiation factor 5 is a protein that in humans is encoded by the GDF5 gene.
BMP-2-inducible protein kinase is an enzyme in humans encoded by the BMP2K gene.
Repulsive guidance molecule A (RGMa) is a bone morphogenetic protein (BMP) co-receptor of the repulsive guidance molecule family. Together with BMPR1A and BMPR1B, as well as ACVR2A and BMPR2, it binds BMPs thereby activating the intracellular SMAD1/5/8 signalling pathway. In humans this protein is encoded by the RGMA gene.
The transforming growth factor beta (TGFβ) receptors are a family of serine/threonine kinase receptors involved in TGF beta signaling pathway. These receptors bind growth factor and cytokine signaling proteins in the TGF-beta family such as TGFβs, bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs), activin and inhibin, myostatin, anti-Müllerian hormone (AMH), and NODAL.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.