glycophorin C (Gerbich blood group) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | GYPC | ||||||
Alt. symbols | GPC, GYPD, Ge, CD236, CD236R | ||||||
NCBI gene | 2995 | ||||||
HGNC | 4704 | ||||||
OMIM | 110750 | ||||||
RefSeq | NM_002101 | ||||||
UniProt | P04921 | ||||||
Other data | |||||||
Locus | Chr. 2 q14-q21 | ||||||
|
Glycophorin C (GYPC; CD236/CD236R; glycoprotein beta; glycoconnectin; PAS-2') plays a functionally important role in maintaining erythrocyte shape and regulating membrane material properties, possibly through its interaction with protein 4.1. Moreover, it has previously been shown that membranes deficient in protein 4.1 exhibit decreased content of glycophorin C. It is also an integral membrane protein of the erythrocyte and acts as the receptor for the Plasmodium falciparum protein PfEBP-2 (erythrocyte binding protein 2; baebl; EBA-140).
The antigen was discovered in 1960 when three women who lacked the antigen made anti-Gea in response to pregnancy. The antigen is named after one of the patients – a Mrs Gerbich. [1] The following year a new but related antigen was discovered in a Mrs Yus for whom an antigen in this system is also named. In 1972 a numerical system for the antigens in this blood group was introduced.
Despite the similar names glycophorin C and D are unrelated to the other three glycophorins which encoded on chromosome 4 at location 4q28-q31. These latter proteins are closely related. Glycophorin A and glycophorin B carry the blood group MN and Ss antigens respectively. There are ~225,000 molecules of GPC and GPD per erythrocyte. [2]
Originally it was thought that glycophorin C and D were the result of a gene duplication event but it was only later realised that they were encoded by the same gene. Glycophorin D (GPD) is generated from the glycophorin C messenger RNA by leaky translation at an in frame AUG at codon 30: glycophorin D = glycophorin C residues 30 to 128. This leaky translation appears to be a uniquely human trait. [3]
Glycophorin C (GPC) is a single polypeptide chain of 128 amino acids and is encoded by a gene on the long arm of chromosome 2 (2q14-q21). The gene was first cloned in 1989 by High et al. [4] The GPC gene is organized in four exons distributed over 13.5 kilobase pairs of DNA. Exon 1 encodes residues 1-16, exon 2 residues 17-35, exon 3 residues 36-63 and exon 4 residues 64-128. Exons 2 and 3 are highly homologous, with less than 5% nucleotide divergence. These exons also differ by a 9 amino acid insert at the 3' end of exon 3. The direct repeated segments containing these exons is 3.4 kilobase pairs long and may be derived from a recent duplication of a single ancestral domain. Exons 1, 2 and most of exon 3 encode the N-terminal extracellular domain while the remainder of exon 3 and exon 4 encode transmembrane and cytoplasmic domains.
Two isoforms are known and the gene is expressed in a wide variety of tissues including kidney, thymus, stomach, breast, adult liver and erythrocyte. In the non erythroid cell lines, expression is lower than in the erythrocyte and the protein is differentially glycosylated. In the erythrocyte glycophorin C makes up ~4% of the membrane sialoglycoproteins. The average number of O linked chains is 12 per molecule.
The gene is expressed early in the development of the erythrocyte, specifically in the erythroid burst-forming unit and erythroid colony-forming unit. The mRNA from human erythroblasts is ~1.4 kilobases long and the transcription start site in erythroid cells has been mapped to 1050 base pairs 5' of the start codon. It is expressed early in development and before the Kell antigens, Rhesus-associated glycoprotein, glycophorin A, band 3, the Rhesus antigen and glycophorin B. [5]
In melanocytic cells Glycophorin C gene expression may be regulated by MITF. [6]
GPC appears to be synthesized in excess in the erythrocyte and that the membrane content is regulated by band 4.1 (protein 4.1). Additional data on the regulation of glycophorin C is here.
In a study of this gene among the Hominoidea two finding unique to humans emerged: (1) an excess of non-synonymous divergence among species that appears to be caused solely by accelerated evolution and (2) the ability of the single GYPC gene to encode both the GPC and GPD proteins. [3] The cause for this is not known but it was suggested that these findings might be the result of infection by Plasmodium falciparum.
After separation of red cell membranes by SDS-polyacrylamide gel electrophoresis and staining with periodic acid-Schiff staining (PAS) four glycophorins have been identified. These have been named glycophorin A, B, C and D in order of the quantity present in the membrane – glycophorin A being the most and glycophorin D the least common. A fifth (glycophorin E) has been identified within the human genome but cannot easily be detected on routine gel staining. In total the glycophorins constitute ~2% of the total erythrocyte membrane protein mass. Confusingly these proteins are also known under different nomenclatures but they are probably best known as the glycophorins.
Glycophorin C was first isolated in 1978. [7] Glycophorin C and D are minor sialoglycoproteins contributing to 4% and 1% to the PAS-positive material and are present at about 2.0 and 0.5 x 105 copies/cell respectively. In polyacrylimide gels glycophorin C's apparent weight is 32 kilodaltons (32 kDa). Its structure is similar to that of other glycophorins: a highly glycoslated extracellular domain (residues 1-58), a transmembrane domain (residues 59-81) and an intracellular domain (residues 82-128). About 90% of the glycophorin C present in the erythrocyte is bound to the cytoskeleton and the remaining 10% moves freely within the membrane.
Glycophorin D's apparent molecular weight is 23kDa. On average this protein has 6 O linked oligosaccharides per molecule.
Within the erythrocyte it interacts with band 4.1 (an 80-kDa protein) and p55 (a palmitoylated peripheral membrane phosphoprotein and a member of the membrane-associated guanylate kinase family) to form a ternary complex that is critical for the shape and stability of erythrocytes. The major attachment sites between the erythrocyte spectrin-actin cytoskeleton and the lipid bilayer are glycophorin C and band 3. The interaction with band 4.1 and p55 is mediated by the N terminal 30 kD domain of band 4.1 binding to a 16 amino acid segment (residues 82-98: residues 61-77 of glycophorin D) within the cytoplasmic domain of glycophorin C and to a positively charged 39 amino acid motif in p55. [8] The majority of protein 4.1 is bound to glycophorin C. The magnitude of the strength of the interaction between glycophorin C and band 4.1 has been estimated to be 6.9 microNewtons per meter, a figure typical of protein–protein interactions.
Glycophorin C normally shows oscillatory movement in the erythrocyte membrane. This is reduced in Southeast Asian ovalocytosis a disease of erythrocytes due to a mutation in band 3. [9]
These glycophorins are associated with eleven antigens of interest to transfusion medicine: the Gerbich (Ge2, Ge3, Ge4), the Yussef (Yus), the Webb (Wb or Ge5), the Duch (Dh(a) or Ge8), the Leach, the Lewis II (Ls(a) or Ge6), the Ahonen (An(a) or Ge7) and GEPL (Ge10*), GEAT (Ge11*) and GETI (Ge12*). Six are of high prevalence (Ge2, Ge3, Ge4, Ge10*, Ge11*, Ge12*) and five of low prevalence (Wb, Ls(a), An(a), Dh(a) and Ge9). [10]
Glycophorin C and D encode the Gerbich (Ge) antigens. There are four alleles, Ge-1 to Ge-4. Three types of Ge antigen negativity are known: Ge-1,-2,-3 (Leach phenotype), Ge-2,-3 and Ge-2,+3. A 3.4 kilobase pair deletion within the gene, which probably arose because of unequal crossing over between the two repeated domains, is responsible for the formation of the Ge-2,-3 genotype. The breakpoints of the deletion are located within introns 2 and 3 and results in the deletion of exon 3. This mutant gene is transcribed as a messenger RNA with a continuous open reading frame extending over 300 nucleotides and is translated into the sialoglycoprotein found on Ge-2,-3 red cells. A second 3.4 kilobase pair deletion within the glycophorin C gene eliminates only exon 2 by a similar mechanism and generates the mutant gene encoding for the abnormal glycoprotein found on Ge-2,+3 erythrocytes.
The Ge2 epitope is antigenic only on glycophorin D and is a cryptic antigen in glycophorin C. It is located within exon 2 and is sensitive to trypsin and papain but resistant to chymotrypsin and pronase. The Ge3 epitope is encoded by exon 3. It is sensitive to trypsin but resistant to chymotrypsin, papain and pronase. It is thought to lie in the between amino acids 42-50 in glycophorin C (residues 21-49 in glycophorin D). Ge4 is located within the first 21 amino acids of glycophorin C. It is sensitive to trypsin, papain, pronase and neuraminidase.
The relatively rare Leach phenotype is due either to a deletion in exons 3 and 4 or to a frameshift mutation causing a premature stop codon in the glycophorin C gene, and persons with this phenotype are less susceptible (~60% of the control rate) to invasion by Plasmodium falciparum . Such individuals have a subtype of a condition called hereditary elliptocytosis. The abnormally shaped cells are known as elliptocytes or cameloid cells. The basis for this phenotype was first reported by Telen et al. [11] The phenotype is Ge:-2,-3,-4.
The Yussef (Yus) phenotype is due to a 57 base pair deletion corresponding to exon 2. The antigen is known as GPC Yus.
Glycophorin C mutations are rare in most of the Western world, but are more common in some places where malaria is endemic. In Melanesia a greater percentage of the population is Gerbich negative (46.5%) than in any other part of the world. The incidence of Gerbich-negative phenotype caused by an exon 3 deletion in the Wosera (East Sepik Province) and Liksul (Madang Province) populations of Papua New Guinea is 0.463 and 0.176 respectively. [12]
The rare Webb (Wb) antigen (~1/1000 donors), originally described in 1963 in Australia, is the result of an alteration in glycosylation of glycophorin C: an A to G transition at nucleotide 23 results in an asparagine residue instead of the normal serine residue with the resultant loss of glycosylation. [13] The antigen is known as GPC Wb.
The rare Duch (Dh) antigen was discovered in Aarhus, Denmark (1968) and is also found on glycophorin C. It is due to a C to T transition at nucleotide 40 resulting in the replacement of leucine by phenylalanine. [14] This antigen is sensitive to trypsin but resistant to chymotrypsin and Endo F. [15]
The Lewis II (Ls(a); Ge-6) antigen has insert of 84 nucleotides into the ancestral GPC gene: the insert corresponds to the entire sequence of exon 3. [16] Two subtypes of this antigen are known: beta Ls(a) which carries the Ge3 epitope and gamma Ls(a) which carries both the Ge2 and Ge3 epitopes. This antigen is also known as the Rs(a) antigen. [17]
The Ahonen (Ana) antigen was first reported in 1972. [18] The antigen is found on glycophorin D. This antigen was discovered in a Finnish man on May 5, 1968, during post operative blood cross matching for an aortic aneurism repair. In Finland the incidence of this antigen was found to be 6/10,000 donors. In Sweden the incidence was 2/3266 donors. The molecular basis for the origin of this antigen lies within exon 2 where a G->T substitution in codon 67 (base position 199) converts an alanine to a serine residue. While this epitope exists within glycophorin C there it is a cryptantigen. It is only antigenic in glycophorin D because of the truncated N terminus.
A duplicated exon 2 has erythrocytes also been reported in Japanese blood donors (~2/10,000). This mutation has not been associated with a new antigen. [19]
Antibodies to the Gerbich antigens have been associated with transfusion reactions and mild hemolytic disease of the newborn. In other studies naturally occurring anti-Ge antibodies have been found and appear to be of no clinical significance. Immunological tolerance towards Ge antigen has been suggested.
High expression of glycophorin C has been associated with a poor prognosis for acute lymphoblastic leukaemia in Chinese populations. [20]
Glycophorin C is the receptor for the protein erythrocyte binding antigen 140 (EBA140) of Plasmodium falciparum . [21] This interaction mediates a principal invasion pathway into the erythrocytes. The partial resistance of erythrocytes lacking this protein to invasion by P. falciparum was first noted in 1982. [22] The lack of Gerbich antigens in the population of Papua New Guinea was noted in 1989. [23]
Influenza A and B bind to glycophorin C. [24]
Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.
Duffy antigen/chemokine receptor (DARC), also known as Fy glycoprotein (FY) or CD234, is a protein that in humans is encoded by the ACKR1 gene.
Complement receptor type 1 (CR1) also known as C3b/C4b receptor or CD35 is a protein that in humans is encoded by the CR1 gene.
CD36, also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene. The CD36 antigen is an integral membrane protein found on the surface of many cell types in vertebrate animals. It imports fatty acids inside cells and is a member of the class B scavenger receptor family of cell surface proteins. CD36 binds many ligands including collagen, thrombospondin, erythrocytes parasitized with Plasmodium falciparum, oxidized low density lipoprotein, native lipoproteins, oxidized phospholipids, and long-chain fatty acids.
Merozoitesurface proteins are both integral and peripheral membrane proteins found on the surface of a merozoite, an early life cycle stage of a protozoan. Merozoite surface proteins, or MSPs, are important in understanding malaria, a disease caused by protozoans of the genus Plasmodium. During the asexual blood stage of its life cycle, the malaria parasite enters red blood cells to replicate itself, causing the classic symptoms of malaria. These surface protein complexes are involved in many interactions of the parasite with red blood cells and are therefore an important topic of study for scientists aiming to combat malaria.
Spectrin is a cytoskeletal protein that lines the intracellular side of the plasma membrane in eukaryotic cells. Spectrin forms pentagonal or hexagonal arrangements, forming a scaffold and playing an important role in maintenance of plasma membrane integrity and cytoskeletal structure. The hexagonal arrangements are formed by tetramers of spectrin subunits associating with short actin filaments at either end of the tetramer. These short actin filaments act as junctional complexes allowing the formation of the hexagonal mesh. The protein is named spectrin since it was first isolated as a major protein component of human red blood cells which had been treated with mild detergents; the detergents lysed the cells and the hemoglobin and other cytoplasmic components were washed out. In the light microscope the basic shape of the red blood cell could still be seen as the spectrin-containing submembranous cytoskeleton preserved the shape of the cell in outline. This became known as a red blood cell "ghost" (spectre), and so the major protein of the ghost was named spectrin.
Southeast Asian ovalocytosis is a blood disorder that is similar to, but distinct from hereditary elliptocytosis. It is common in some communities in Malaysia and Papua New Guinea, as it confers some resistance to cerebral Falciparum Malaria.
A glycophorin is a sialoglycoprotein of the membrane of a red blood cell. It is a membrane-spanning protein and carries sugar molecules. It is heavily glycosylated (60%). Glycophorins are rich in sialic acid, which gives the red blood cells a very hydrophilic-charged coat. This enables them to circulate without adhering to other cells or vessel walls.
Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.
Blood group Rh(CE) polypeptide is a protein that in humans is encoded by the RHCE gene. RHCE has also recently been designated CD240CE.
Glycophorin A (MNS blood group), also known as GYPA, is a protein which in humans is encoded by the GYPA gene. GYPA has also recently been designated CD235a (cluster of differentiation 235a).
Glycophorin B (MNS blood group) (gene designation GYPB) also known as sialoglycoprotein delta and SS-active sialoglycoprotein is a protein which in humans is encoded by the GYPB gene. GYPB has also recently been designated CD235b (cluster of differentiation 235b).
Glycophorin-E is a protein that in humans is encoded by the GYPE gene.
Human genetic resistance to malaria refers to inherited changes in the DNA of humans which increase resistance to malaria and result in increased survival of individuals with those genetic changes. The existence of these genotypes is likely due to evolutionary pressure exerted by parasites of the genus Plasmodium which cause malaria. Since malaria infects red blood cells, these genetic changes are most common alterations to molecules essential for red blood cell function, such as hemoglobin or other cellular proteins or enzymes of red blood cells. These alterations generally protect red blood cells from invasion by Plasmodium parasites or replication of parasites within the red blood cell.
In molecular biology, Duffy binding proteins are found in Plasmodium. Plasmodium vivax and Plasmodium knowlesi merozoites invade Homo sapiens erythrocytes that express Duffy blood group surface determinants. The Duffy receptor family is localised in micronemes, an organelle found in all organisms of the phylum Apicomplexa.
Russell J. Howard is an Australian-born executive, entrepreneur and scientist. He was a pioneer in the fields of molecular parasitology, especially malaria, and in leading the commercialisation of one of the most important methods used widely today in molecular biology today called “DNA shuffling" or "Molecular breeding", a form of "Directed evolution".
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells that are infected by the malarial parasite Plasmodium falciparum. PfEMP1 is synthesized during the parasite's blood stage inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs, ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.
The Plasmodium helical interspersed subtelomeric proteins (PHIST) or ring-infected erythrocyte surface antigens (RESA) are a family of protein domains found in the malaria-causing Plasmodium species. It was initially identified as a short four-helical conserved region in the single-domain export proteins, but the identification of this part associated with a DnaJ domain in P. falciparum RESA has led to its reclassification as the RESA N-terminal domain. This domain has been classified into three subfamilies, PHISTa, PHISTb, and PHISTc.
The Lan blood group system is a human blood group defined by the presence or absence of the Lan antigen on a person's red blood cells. More than 99.9% of people are positive for the Lan antigen. Individuals with the rare Lan-negative blood type, which is a recessive trait, can produce an anti-Lan antibody when exposed to Lan-positive blood. Anti-Lan antibodies may cause transfusion reactions on subsequent exposures to Lan-positive blood, and have also been implicated in mild cases of hemolytic disease of the newborn. However, the clinical significance of the antibody is variable. The antigen was first described in 1961, and Lan was officially designated a blood group in 2012.
Elwira Lisowska is a Polish biochemist and professor. She made significant contributions to the biochemistry of human blood groups, especially MNS and P1PK blood group systems, and to the immunochemical characterization of glycopeptide antigens.