Keratan sulfate

Last updated
Chemical structure of keratan sulfate Keratan sulfate.svg
Chemical structure of keratan sulfate

Keratan sulfate (KS), also called keratosulfate, is any of several sulfated glycosaminoglycans (structural carbohydrates) that have been found especially in the cornea, cartilage, and bone. It is also synthesized in the central nervous system where it participates both in development [1] and in the glial scar formation following an injury. [2] Keratan sulfates are large, highly hydrated molecules which in joints can act as a cushion to absorb mechanical shock.

Contents

Structure

Like other glycosaminoglycans keratan sulfate is a linear polymer that consists of a repeating disaccharide unit. Keratan sulfate occurs as a proteoglycan (PG) in which KS chains are attached to cell-surface or extracellular matrix proteins, termed core proteins. KS core proteins include lumican, keratocan, mimecan, fibromodulin, PRELP, osteoadherin, and aggrecan.

The basic repeating disaccharide unit within keratan sulfate is -3Galβ1-4GlcNAc6Sβ1-. This can be sulfated at carbon position 6 (C6) of either or both the Gal or GlcNAc monosaccharides. However, the detailed primary structure of specific KS types are best considered to be composed of three regions: [3]

The monosaccharide mannose is found within the linkage region of keratan sulfate type I (KSI). Disaccharides within the repeating region of KSII may be fucosylated and N-Acetylneuraminic acid caps the end of all keratan sulfate type II (KSII) chains and up to 70% of KSI type chains. [4]

KS classes

The designations KSI and KSII were originally assigned on the basis of the tissue type from which the keratan sulfate was isolated. KSI was isolated from corneal tissue and KSII from skeletal tissue. [5] [6] Minor monosaccharide compositional differences exist between KS extracted from both sources and even KS extracted from the same source. However, major differences occur in the way each KS type is joined to its core protein. [7] The designations KSI and KSII are now based upon these protein linkage differences. KSI is N-linked to specific asparagine amino acids via N-acetylglucosamine and KSII is O-linked to specific serine or threonine amino acids via N-acetylgalactosamine. [8] The tissue based classification of KS no longer exists as KS types have been shown to be non tissue specific. [4] A third type of KS (KSIII) has also been isolated from brain tissue that is O-linked to specific serine or threonine amino acids via mannose. [9]

Corneal KSI

The amount of KS found in the cornea is 10 fold higher than it is in cartilage and 2-4 times higher than it is in other tissues. [10] It is produced by corneal keratocytes [11] and is thought to play a role of a dynamic buffer of corneal hydration. In a rare progressive disorder called macular corneal dystrophy (MCDC), the synthesis of keratan sulfate is either absent (MCDC type I) or abnormal (MCDC type II). [12]

Non-corneal KSI

Osteoadherin, fibromodulin, and PRELP are core proteins found in bone and cartilage, that are modified by N-linked KS chains. Osteoadherin and Fibromodulin linked KS chains are shorter than those found in the cornea, typically 8-9 disaccharide units in length. [13] Whereas corneal KSI is composed of a number of domains showing variable degrees of sulphation the longest of which may be 8-32 disaccharide units in length. The non-reducing terminal of Fibromodulin KS is more similar in structure to the non-reducing terminal of a KSII type keratan sulphate rather than to corneal KSI. KS structure is therefore believed to be determined by the tissue specific availability of glycosyltransferases rather than linkage type to the core protein. [4]

KSII

Cartilage KSII is almost entirely sulphated, consisting of disulphated monomers interrupted occasionally by a single monosulphated lactosamine monomer. [8] Fucosylation is also common with alpha-linked fucose present at the carbon 3 position of sulphated GlcNAc, except in the case of tracheal KSII where this feature is absent.

See also

Related Research Articles

<span class="mw-page-title-main">Glycoprotein</span> Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

<span class="mw-page-title-main">Chondroitin sulfate</span> Sulfated glycosaminoglycan (GAG) compound

Chondroitin sulfate is a sulfated glycosaminoglycan (GAG) composed of a chain of alternating sugars. It is usually found attached to proteins as part of a proteoglycan. A chondroitin chain can have over 100 individual sugars, each of which can be sulfated in variable positions and quantities. Chondroitin sulfate is an important structural component of cartilage, and provides much of its resistance to compression. Along with glucosamine, chondroitin sulfate has become a widely used dietary supplement for treatment of osteoarthritis, although large clinical trials failed to demonstrate any symptomatic benefit of chondroitin.

<span class="mw-page-title-main">Proteoglycan</span> Class of compounds

Proteoglycans are proteins that are heavily glycosylated. The basic proteoglycan unit consists of a "core protein" with one or more covalently attached glycosaminoglycan (GAG) chain(s). The point of attachment is a serine (Ser) residue to which the glycosaminoglycan is joined through a tetrasaccharide bridge. The Ser residue is generally in the sequence -Ser-Gly-X-Gly-, although not every protein with this sequence has an attached glycosaminoglycan. The chains are long, linear carbohydrate polymers that are negatively charged under physiological conditions due to the occurrence of sulfate and uronic acid groups. Proteoglycans occur in connective tissue.

<span class="mw-page-title-main">Glycosaminoglycan</span> Polysaccharides found in animal tissue

Glycosaminoglycans (GAGs) or mucopolysaccharides are long, linear polysaccharides consisting of repeating disaccharide units. The repeating two-sugar unit consists of a uronic sugar and an amino sugar, except in the case of the sulfated glycosaminoglycan keratan, where, in place of the uronic sugar there is a galactose unit. GAGs are found in vertebrates, invertebrates and bacteria. Because GAGs are highly polar molecules and attract water; the body uses them as lubricants or shock absorbers.

<span class="mw-page-title-main">Versican</span> Protein-coding gene in the species Homo sapiens

Versican is a large extracellular matrix proteoglycan that is present in a variety of human tissues. It is encoded by the VCAN gene.

<span class="mw-page-title-main">Perlecan</span>

Perlecan (PLC) also known as basement membrane-specific heparan sulfate proteoglycan core protein (HSPG) or heparan sulfate proteoglycan 2 (HSPG2), is a protein that in humans is encoded by the HSPG2 gene. The HSPG2 gene codes for a 4,391 amino acid protein with a molecular weight of 468,829. It is one of the largest known proteins.

<span class="mw-page-title-main">Heparan sulfate</span> Macromolecule

Heparan sulfate (HS) is a linear polysaccharide found in all animal tissues. It occurs as a proteoglycan in which two or three HS chains are attached in close proximity to cell surface or extracellular matrix proteins. It is in this form that HS binds to a variety of protein ligands, including Wnt, and regulates a wide range of biological activities, including developmental processes, angiogenesis, blood coagulation, abolishing detachment activity by GrB, and tumour metastasis. HS has also been shown to serve as cellular receptor for a number of viruses, including the respiratory syncytial virus. One study suggests that cellular heparan sulfate has a role in SARS-CoV-2 Infection, particularly when the virus attaches with ACE2.

<span class="mw-page-title-main">Stroma of cornea</span> Lamellated connective tissue of cornea

The stroma of the cornea is a fibrous, tough, unyielding, perfectly transparent and the thickest layer of the cornea of the eye. It is between Bowman's membrane anteriorly, and Descemet's membrane posteriorly.

<span class="mw-page-title-main">Biglycan</span> Protein-coding gene in the species Homo sapiens

Biglycan is a small leucine-rich repeat proteoglycan (SLRP) which is found in a variety of extracellular matrix tissues, including bone, cartilage and tendon. In humans, biglycan is encoded by the BGN gene which is located on the X chromosome.

<span class="mw-page-title-main">Aggrecan</span>

Aggrecan (ACAN), also known as cartilage-specific proteoglycan core protein (CSPCP) or chondroitin sulfate proteoglycan 1, is a protein that in humans is encoded by the ACAN gene. This gene is a member of the lectican family. The encoded protein is an integral part of the extracellular matrix in cartilagenous tissue and it withstands compression in cartilage.

<span class="mw-page-title-main">Lumican</span>

Lumican, also known as LUM, is an extracellular matrix protein that, in humans, is encoded by the LUM gene on chromosome 12.

<span class="mw-page-title-main">CHST6</span> Protein-coding gene in the species Homo sapiens

Carbohydrate sulfotransferase 6 is an enzyme that in humans is encoded by the CHST6 gene.

<span class="mw-page-title-main">Osteoglycin</span>

Osteoglycin, encoded by the OGN gene, is a human protein.

<span class="mw-page-title-main">Keratocan</span>

Keratocan (KTN) also known as keratan sulfate proteoglycan keratocan, is a protein that in humans is encoded by the KERA gene.

<span class="mw-page-title-main">Fibromodulin</span> Protein

Fibromodulin is a protein that in humans is encoded by the FMOD gene.

<span class="mw-page-title-main">B3GAT3</span> Protein-coding gene in the species Homo sapiens

Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3 is an enzyme that in humans is encoded by the B3GAT3 gene.

<span class="mw-page-title-main">Corneal keratocyte</span>

Corneal keratocytes are specialized fibroblasts residing in the stroma. This corneal layer, representing about 85-90% of corneal thickness, is built up from highly regular collagenous lamellae and extracellular matrix components. Keratocytes play the major role in keeping it transparent, healing its wounds, and synthesizing its components. In the unperturbed cornea keratocytes stay dormant, coming into action after any kind of injury or inflammation. Some keratocytes underlying the site of injury, even a light one, undergo apoptosis immediately after the injury. Any glitch in the precisely orchestrated process of healing may cloud the cornea, while excessive keratocyte apoptosis may be a part of the pathological process in the degenerative corneal disorders such as keratoconus, and these considerations prompt the ongoing research into the function of these cells.

<span class="mw-page-title-main">Sclerocornea</span> Medical condition

Sclerocornea is a congenital anomaly of the eye in which the cornea blends with sclera, having no clear-cut boundary. The extent of the resulting opacity varies from peripheral to total. The severe form is thought to be inherited in an autosomal recessive manner, but there may be another, milder form that is expressed in a dominant fashion. In some cases the patients also have abnormalities beyond the eye (systemic), such as limb deformities and craniofacial and genitourinary defects.

<span class="mw-page-title-main">Carbohydrate sulfotransferase</span>

Carbohydrate sulfotransferases are sulfotransferase enzymes that transfer sulfate to carbohydrate groups in glycoproteins and glycolipids. Carbohydrates are used by cells for a wide range of functions from structural purposes to extracellular communication. Carbohydrates are suitable for such a wide variety of functions due to the diversity in structure generated from monosaccharide composition, glycosidic linkage positions, chain branching, and covalent modification. Possible covalent modifications include acetylation, methylation, phosphorylation, and sulfation. Sulfation, performed by carbohydrate sulfotransferases, generates carbohydrate sulfate esters. These sulfate esters are only located extracellularly, whether through excretion into the extracellular matrix (ECM) or by presentation on the cell surface. As extracellular compounds, sulfated carbohydrates are mediators of intercellular communication, cellular adhesion, and ECM maintenance.

O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. O-glycosylation is a post-translational modification that occurs after the protein has been synthesised. In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm. Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity. O-glycans, which are the sugars added to the serine or threonine, have numerous functions throughout the body, including trafficking of cells in the immune system, allowing recognition of foreign material, controlling cell metabolism and providing cartilage and tendon flexibility. Because of the many functions they have, changes in O-glycosylation are important in many diseases including cancer, diabetes and Alzheimer's. O-glycosylation occurs in all domains of life, including eukaryotes, archaea and a number of pathogenic bacteria including Burkholderia cenocepacia, Neisseria gonorrhoeae and Acinetobacter baumannii.

References

  1. Miller B, Sheppard AM, Pearlman AL (April 1997). "Developmental expression of keratan sulfate-like immunoreactivity distinguishes thalamic nuclei and cortical domains". J. Comp. Neurol. 380 (4): 533–52. doi:10.1002/(SICI)1096-9861(19970421)380:4<533::AID-CNE9>3.0.CO;2-2. PMID   9087531.
  2. Zhang H, Uchimura K, Kadomatsu K (November 2006). "Brain keratan sulfate and glial scar formation". Ann. N. Y. Acad. Sci. 1086 (1): 81–90. Bibcode:2006NYASA1086...81Z. doi:10.1196/annals.1377.014. PMID   17185507.
  3. Tai GH, Huckerby TN, Nieduszynski IA (1996). "Multiple non-reducing chain termini isolated from bovine corneal keratan sulfates". J. Biol. Chem. 271 (38): 23535–23546. doi: 10.1074/jbc.271.38.23535 . PMID   8798563.
  4. 1 2 3 Funderburgh JL. (2000). "Keratan sulfate: structure, biosynthesis, and function". Glycobiology. 10 (10): 951–958. doi: 10.1093/glycob/10.10.951 . PMID   11030741.
  5. Meyer K, Linker A, et al. (1 December 1953). "The mucopolysaccharides of bovine cornea". J. Biol. Chem. 205 (2): 611–616. PMID   13129238.
  6. Meyer K; Hoffman P.; Linker A. (1958). "Mucopolysaccharides of Costal Cartilage". Science. 128 (3329): 896. Bibcode:1958Sci...128..896M. doi:10.1126/science.128.3329.896. PMID   13592269.
  7. Seno N, Meyer K, et al. (1 March 1965). "Variations in Keratosulfates". J. Biol. Chem. 240 (3): 1005–1019. PMID   14284693.
  8. 1 2 Nieduszynski IA, Huckerby TN, et al. (1990). "There are two major types of skeletal keratan sulphates". Biochem. J. 271 (1): 243–245. doi:10.1042/bj2710243. PMC   1149539 . PMID   2222415.
  9. Krusius T, Finne J, et al. (25 June 1986). "Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain". J. Biol. Chem. 261 (18): 8237–8242. PMID   2941416.
  10. Funderburgh JL; Caterson B.; Conrad GW. (1987). "Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan". J. Biol. Chem. 262 (24): 11634–11640. PMID   2957372.
  11. Funderburgh JL, Mann MM, Funderburgh ML (November 2003). "Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis". J. Biol. Chem. 278 (46): 45629–37. doi:10.1074/jbc.M303292200. PMC   2877919 . PMID   12933807.
  12. Macular dystrophy, corneal, 1 - OMIM
  13. Lauder RM, Huckerby TN, Nieduszynski IA (1997). "The structure of the keratan sulphate chains attached to fibromodulin from human articular cartilage". Glycoconj J. 14 (5): 651–660. doi:10.1023/A:1018552913584. PMID   9298700.