Disaccharide

Last updated
Sucrose, a disaccharide formed from condensation of a molecule of glucose and a molecule of fructose Sucrose molecule.svg
Sucrose, a disaccharide formed from condensation of a molecule of glucose and a molecule of fructose

A disaccharide (also called a double sugar or biose) [1] is the sugar formed when two monosaccharides are joined by glycosidic linkage. [2] Like monosaccharides, disaccharides are simple sugars soluble in water. Three common examples are sucrose, lactose, and maltose.

Contents

Disaccharides are one of the four chemical groupings of carbohydrates (monosaccharides, disaccharides, oligosaccharides, and polysaccharides). The most common types of disaccharides—sucrose, lactose, and maltose—have 12 carbon atoms, with the general formula C12H22O11. The differences in these disaccharides are due to atomic arrangements within the molecule. [3]

The joining of monosaccharides into a double sugar happens by a condensation reaction, which involves the elimination of a water molecule from the functional groups only. Breaking apart a double sugar into its two monosaccharides is accomplished by hydrolysis with the help of a type of enzyme called a disaccharidase. As building the larger sugar ejects a water molecule, breaking it down consumes a water molecule. These reactions are vital in metabolism. Each disaccharide is broken down with the help of a corresponding disaccharidase (sucrase, lactase, and maltase).

Classification

There are two functionally different classes of disaccharides:

Formation

The formation of a disaccharide molecule from two monosaccharide molecules proceeds by displacing a hydroxy group from one molecule and a hydrogen nucleus (a proton) from the other, so that the new vacant bonds on the monosaccharides join the two monomers together. Because of the removal of the water molecule from the product, the term of convenience for such a process is "dehydration reaction" (also "condensation reaction" or "dehydration synthesis"). For example, milk sugar (lactose) is a disaccharide made by condensation of one molecule of each of the monosaccharides glucose and galactose, whereas the disaccharide sucrose in sugar cane and sugar beet, is a condensation product of glucose and fructose. Maltose, another common disaccharide, is condensed from two glucose molecules. [7]

The dehydration reaction that bonds monosaccharides into disaccharides (and also bonds monosaccharides into more complex polysaccharides) forms what are called glycosidic bonds. [8]

Properties

The glycosidic bond can be formed between any hydroxy group on the component monosaccharide. So, even if both component sugars are the same (e.g., glucose), different bond combinations (regiochemistry) and stereochemistry (alpha- or beta-) result in disaccharides that are diastereoisomers with different chemical and physical properties. Depending on the monosaccharide constituents, disaccharides are sometimes crystalline, sometimes water-soluble, and sometimes sweet-tasting and sticky-feeling. Disaccharides can serve as functional groups by forming glycosidic bonds with other organic compounds, forming glycosides.

Assimilation

Digestion of disaccharides involves breakdown into monosaccharides.

Common disaccharides

DisaccharideUnit 1Unit 2Bond
Sucrose (table sugar, cane sugar, beet sugar, or saccharose) Glucose Fructose α(1→2)β
Lactose (milk sugar) Galactose Glucoseβ(1→4)
Maltose (malt sugar)GlucoseGlucoseα(1→4)
Trehalose GlucoseGlucoseα(1→1)α
Cellobiose GlucoseGlucoseβ(1→4)
Chitobiose Glucosamine Glucosamineβ(1→4)

Maltose, cellobiose, and chitobiose are hydrolysis products of the polysaccharides starch, cellulose, and chitin, respectively.

Less common disaccharides include: [9]

DisaccharideUnitsBond
Kojibiose Two glucoses α(1→2) [10]
Nigerose Two glucosesα(1→3)
Isomaltose Two glucosesα(1→6)
β,β-TrehaloseTwo glucosesβ(1→1)β
α,β-TrehaloseTwo glucosesα(1→1)β [11]
Sophorose Two glucosesβ(1→2)
Laminaribiose Two glucosesβ(1→3)
Gentiobiose Two glucosesβ(1→6)
Trehalulose One glucose and one fructose α(1→1)
Turanose One glucose and one fructoseα(1→3)
MaltuloseOne glucose and one fructoseα(1→4)
LeucroseOne glucose and one fructoseα(1→5)
Isomaltulose One glucose and one fructoseα(1→6)
GentiobiuloseOne glucose and one fructoseβ(1→6)
Mannobiose Two mannoses Either α(1→2), α(1→3), α(1→4), or α(1→6)
Melibiose One galactose and one glucoseα(1→6)
Allolactose One galactose and one glucoseβ(1→6)
Melibiulose One galactose and one fructoseα(1→6)
Lactulose One galactose and one fructoseβ(1→4)
Rutinose One rhamnose and one glucoseα(1→6)
RutinuloseOne rhamnose and one fructoseβ(1→6)
Xylobiose Two xylopyranosesβ(1→4)

Related Research Articles

<span class="mw-page-title-main">Biochemistry</span> Study of chemical processes in living organisms

Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, and metabolism. Over the last decades of the 20th century, biochemistry has become successful at explaining living processes through these three disciplines. Almost all areas of the life sciences are being uncovered and developed through biochemical methodology and research. Biochemistry focuses on understanding the chemical basis which allows biological molecules to give rise to the processes that occur within living cells and between cells, in turn relating greatly to the understanding of tissues and organs as well as organism structure and function. Biochemistry is closely related to molecular biology, the study of the molecular mechanisms of biological phenomena.

<span class="mw-page-title-main">Carbohydrate</span> Organic compound that consists only of carbon, hydrogen, and oxygen

A carbohydrate is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 and thus with the empirical formula Cm(H2O)n, which does not mean the H has covalent bonds with O. However, not all carbohydrates conform to this precise stoichiometric definition, nor are all chemicals that do conform to this definition automatically classified as carbohydrates.

Hydrolysis is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.

<span class="mw-page-title-main">Lactose</span> Carbohydrate

Lactose, or milk sugar, is a disaccharide sugar composed of galactose and glucose subunits and has the molecular formula C12H22O11. Lactose makes up around 2–8% of milk (by mass). The name comes from lact (gen. lactis), the Latin word for milk, plus the suffix -ose used to name sugars. The compound is a white, water-soluble, non-hygroscopic solid with a mildly sweet taste. It is used in the food industry.

Monosaccharides, also called simple sugars, are the simplest forms of sugar and the most basic units (monomers) from which all carbohydrates are built. Simply, this is the structural unit of carbohydrates.

A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

Benedict's reagent is a chemical reagent and complex mixture of sodium carbonate, sodium citrate, and copper(II) sulfate pentahydrate. It is often used in place of Fehling's solution to detect the presence of reducing sugars. The presence of other reducing substances also gives a positive result. Such tests that use this reagent are called the Benedict's tests. A positive test with Benedict's reagent is shown by a color change from clear blue to brick-red with a precipitate.

<span class="mw-page-title-main">Maltose</span> Chemical compound

Maltose, also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt. Unlike sucrose, it is a reducing sugar.

Digestion is the breakdown of carbohydrates to yield an energy-rich compound called ATP. The production of ATP is achieved through the oxidation of glucose molecules. In oxidation, the electrons are stripped from a glucose molecule to reduce NAD+ and FAD. NAD+ and FAD possess a high energy potential to drive the production of ATP in the electron transport chain. ATP production occurs in the mitochondria of the cell. There are two methods of producing ATP: aerobic and anaerobic. In aerobic respiration, oxygen is required. Using oxygen increases ATP production from 4 ATP molecules to about 30 ATP molecules. In anaerobic respiration, oxygen is not required. When oxygen is absent, the generation of ATP continues through fermentation. There are two types of fermentation: alcohol fermentation and lactic acid fermentation.

<span class="mw-page-title-main">Glycoside</span> Molecule in which a sugar is bound to another functional group

In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators. In animals and humans, poisons are often bound to sugar molecules as part of their elimination from the body.

<span class="mw-page-title-main">Reducing sugar</span> Sugars that contain free OH group at the anomeric carbon atom

A reducing sugar is any sugar that is capable of acting as a reducing agent. In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reaction, the sugar becomes a carboxylic acid.

<span class="mw-page-title-main">Cellobiose</span> Chemical compound

Cellobiose is a disaccharide with the formula (C6H7(OH)4O)2O. It is classified as a reducing sugar - any sugar that possesses the ability or function of a reducing agent. The chemical structure of cellulose is derived from the condensation of a pair of β-glucose molecules forming a β(1→4) bond. It can be hydrolyzed to glucose enzymatically or with acid. Cellobiose has eight free alcohol (OH) groups, one acetal linkage, and one hemiacetal linkage, which give rise to strong inter- and intramolecular hydrogen bonds. It is a white solid.

<span class="mw-page-title-main">Seliwanoff's test</span> Chemical test

Seliwanoff’s test is a chemical test which distinguishes between aldose and ketose sugars. If the sugar contains a ketone group, it is a ketose. If a sugar contains an aldehyde group, it is an aldose. This test relies on the principle that, when heated, ketoses are more rapidly dehydrated than aldoses. It is named after Theodor Seliwanoff, the chemist who devised the test. When added to a solution containing ketoses, a red color is formed rapidly indicating a positive test. When added to a solution containing aldoses, a slower forming light pink is observed instead.

In enzymology, a cellobiose dehydrogenase (acceptor) (EC 1.1.99.18) is an enzyme that catalyzes the chemical reaction

Oligosaccharides and polysaccharides are an important class of polymeric carbohydrates found in virtually all living entities. Their structural features make their nomenclature challenging and their roles in living systems make their nomenclature important.

Carbohydrate synthesis is a sub-field of organic chemistry concerned specifically with the generation of natural and unnatural carbohydrate structures. This can include the synthesis of monosaccharide residues or structures containing more than one monosaccharide, known as oligosaccharides.

Isomaltooligosaccharide (IMO) is a mixture of short-chain carbohydrates which has a digestion-resistant property. IMO is found naturally in some foods, as well as being manufactured commercially. The raw material used for manufacturing IMO is starch, which is enzymatically converted into a mixture of isomaltooligosaccharides.

Alfred Wöhlk, also: Woehlk, Wøhlk, (1868–1949) was a Danish chemist and pharmacist. With his historical detection reaction from 1904, the lactose content of dairy products can be visualized. This is useful because many people are lactose intolerant and avoid dairy products. Countless pharmacy students, but also physicians, laboratory assistants, and recently also chemistry teachers know the Wöhlk test.

Lacto-<i>N</i>-tetraose Chemical compound

Lacto-N-tetraose is a complex sugar found in human milk. It is one of the few characterized human milk oligosaccharides (HMOs) and is enzymatically synthesized from the substrate lactose. It is biologically relevant in the early development of the infant gut flora.

References

  1. "Biose". Merriam-Webster .
  2. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " disaccharides ". doi : 10.1351/goldbook.D01776
  3. Kwan, Lam Peng (2000). Biology- A course for O Level. p. 59. ISBN   9810190964.
  4. Ruppersberg, Klaus; Herzog, Stefanie; Kussler, Manfred W.; Parchmann, Ilka (2019). "How to visualize the different lactose content of dairy products by Fearon's test and Woehlk test in classroom experiments and a new approach to the mechanisms and formulae of the mysterious red dyes". Chemistry Teacher International . 2 (2). doi: 10.1515/cti-2019-0008 .
  5. "Nomenclature of Carbohydrates (Recommendations 1996): 2-Carb-36". chem.qmul.ac.uk. Archived from the original on 2017-08-26. Retrieved 2010-07-21.
  6. "Disaccharides and Oligosaccharides". University of Virginia Faculty and Lab Site. Archived from the original on 2018-11-18. Retrieved 2008-01-29.
  7. Whitney, Ellie; Sharon Rady Rolfes (2011). Peggy Williams (ed.). Understanding Nutrition (Twelfth ed.). California: Wadsworth, Cengage Learning. p. 100. ISBN   978-0-538-73465-3.
  8. "Glycosidic Link". OChemPal. Utah Valley University. Archived from the original on May 12, 2013. Retrieved 11 December 2013.
  9. Parrish, F.W.; Hahn, W.B.; Mandels, G.R. (July 1968). "Crypticity of Myrothecium verrucaria Spores to Maltose and Induction of Transport by Maltulose, a Common Maltose Contaminant". J. Bacteriol. 96 (1). American Society for Microbiology: 227–233. doi: 10.1128/JB.96.1.227-233.1968 . PMC   252277 . PMID   5690932.
  10. Matsuda, K.; Abe, Y; Fujioka, K (November 1957). "Kojibiose (2-O-alpha-D-Glucopyranosyl-D-Glucose): Isolation and Structure: Chemical Synthesis". Nature. 180 (4593): 985–6. Bibcode:1957Natur.180..985M. doi: 10.1038/180985a0 . PMID   13483573.
  11. T. Taga; Y. Miwa; Z. Min (1997). "α,β-Trehalose Monohydrate". Acta Crystallogr. C. 53 (2): 234–236. doi:10.1107/S0108270196012693.