Sugars in wine

Last updated

The sugars in grapes are stored in the pulp along with water, organic acids and other compounds Grape slice.jpg
The sugars in grapes are stored in the pulp along with water, organic acids and other compounds

Sugars in wine are at the heart of what makes winemaking possible. During the process of fermentation, sugars from wine grapes are broken down and converted by yeast into alcohol (ethanol) and carbon dioxide. Grapes accumulate sugars as they grow on the grapevine through the translocation of sucrose molecules that are produced by photosynthesis from the leaves. During ripening the sucrose molecules are hydrolyzed (separated) by the enzyme invertase into glucose and fructose. By the time of harvest, between 15 and 25% of the grape will be composed of simple sugars. Both glucose and fructose are six-carbon sugars but three-, four-, five- and seven-carbon sugars are also present in the grape. Not all sugars are fermentable, with sugars like the five-carbon arabinose, rhamnose and xylose still being present in the wine after fermentation. Very high sugar content will effectively kill the yeast once a certain (high) alcohol content is reached. For these reasons, no wine is ever fermented completely "dry" (meaning without any residual sugar). Sugar's role in dictating the final alcohol content of the wine (and such its resulting body and "mouth-feel") sometimes encourages winemakers to add sugar (usually sucrose) during winemaking in a process known as chaptalization solely in order to boost the alcohol content – chaptalization does not increase the sweetness of a wine. [1]

Contents

Sucrose

Sucrose is a disaccharide, a molecule composed of the two monosaccharides glucose, and fructose. Invertase is the enzyme cleaves the glycosidic linkage between the glucose and fructose molecules.

In most wines, there will be very little sucrose, since it is not a natural constituent of grapes and sucrose added for the purpose of chaptalisation will be consumed in the fermentation. The exception to this rule is Champagne and other sparkling wines, to which an amount of liqueur d'expédition (typically sucrose dissolved in a still wine) is added after the second fermentation in bottle, a practice known as dosage.

Glucose

Glucose, along with fructose, is one of the primary sugars found in wine grapes. In wine, glucose tastes less sweet than fructose. It is a six-carbon sugar molecule derived from the breakdown of sucrose. At the beginning of the ripening stage there is usually more glucose than fructose present in the grape (as much as five times more) but the rapid development of fructose shifts the ratio to where at harvest there are generally equal amounts. Grapes that are overripe, such as some late harvest wines, may have more fructose than glucose. During fermentation, yeast cells break down and convert glucose first. The linking of glucose molecules with aglycone, in a process that creates glycosides, also plays a role in the resulting flavor of the wine due to their relation and interactions with phenolic compounds like anthocyanins and terpenoids. [2]

Fructose

In wines like Port, the addition of neutral grape spirits stuns the yeast and halts fermentation, leaving a wine with a higher proportion of fructose sugars and creating a sweet wine. Sandeman Port 2.jpg
In wines like Port, the addition of neutral grape spirits stuns the yeast and halts fermentation, leaving a wine with a higher proportion of fructose sugars and creating a sweet wine.

Fructose, along with glucose, is one of the principal sugars involved in the creation of wine. At time of harvest, there is usually an equal amount of glucose and fructose molecules in the grape; however, as the grape overripens the level of fructose will become higher. In wine, fructose can taste nearly twice as sweet as glucose and is a key component in the creation of sweet dessert wines. During fermentation, glucose is consumed first by the yeast and converted into alcohol. A winemaker that chooses to halt fermentation (either by temperature control or the addition of brandy spirits in the process of fortification) will be left with a wine that is high in fructose and notable residual sugars. The technique of süssreserve , where unfermented grape must is added after the wine's fermentation is complete, will result in a wine that tastes less sweet than a wine whose fermentation was halted. This is because the unfermented grape must will still have roughly equal parts of fructose and the less sweet tasting glucose. Similarly, the process of chaptalization where sucrose (which is one part glucose and one part fructose) is added will usually not increase the sweetness level of the wine. [3]

In wine tasting

In wine tasting, humans are least sensitive to the taste of sweetness (in contrast to sensitivity to bitterness or sourness) with the majority of the population being able to detect sugar or "sweetness" in wines between 1% and 2.5% residual sugar. Additionally, other components of wine such as acidity and tannins can mask the perception of sugar in the wine. [1]

Flash release

Flash release is a technique used in wine pressing. [4] The technique allows for a better extraction of wine polysaccharides. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Fortified wine</span> Wine with an added distilled beverage

Fortified wine is a wine to which a distilled spirit, usually brandy, has been added. In the course of some centuries, winemakers have developed many different styles of fortified wine, including port, sherry, madeira, Marsala, Commandaria wine, and the aromatised wine vermouth.

Fermentation is a metabolic process whereby electrons released from nutrients are ultimately transferred to molecules obtained from the breakdown of those same nutrients.

<span class="mw-page-title-main">Dessert wine</span> Sweet wine typically served with dessert

Dessert wines, sometimes called pudding wines in the United Kingdom, are sweet wines typically served with dessert.

<span class="mw-page-title-main">Winemaking</span> Production of wine

Winemaking, wine-making, or vinification is the production of wine, starting with the selection of the fruit, its fermentation into alcohol, and the bottling of the finished liquid. The history of wine-making stretches over millennia. There is evidence that suggests that the earliest wine production took place in Georgia and Iran around 6000 to 5000 B.C. The science of wine and winemaking is known as oenology. A winemaker may also be called a vintner. The growing of grapes is viticulture and there are many varieties of grapes.

<span class="mw-page-title-main">Inverted sugar syrup</span> Edible mixture of glucose and fructose, obtained from sucrose hydrolysis

Inverted sugar syrup, also called invert syrup, invert sugar, simple syrup, sugar syrup, sugar water, bar syrup, syrup USP, or sucrose inversion, is a syrup mixture of the monosaccharides glucose and fructose, that is made by hydrolytic saccharification of the disaccharide sucrose. This mixture's optical rotation is opposite to that of the original sugar, which is why it is called an invert sugar.

<span class="mw-page-title-main">White wine</span> Wine fermented without skin contact

White wine is a wine that is fermented without skin contact. The colour can be straw-yellow, yellow-green, or yellow-gold. It is produced by the alcoholic fermentation of the non-coloured pulp of grapes, which may have a skin of any colour. White wine has existed for at least 4,000 years.

<span class="mw-page-title-main">Chaptalization</span> Process in wine production

Chaptalization is the process of adding sugar to unfermented grape must in order to increase the alcohol content after fermentation. The technique is named after its developer, the French chemist Jean-Antoine-Claude Chaptal. This process is not intended to make the wine sweeter, but rather to provide more sugar for the yeast to ferment into alcohol.

<span class="mw-page-title-main">Malolactic fermentation</span> Process in winemaking

Malolactic conversion is a process in winemaking in which tart-tasting malic acid, naturally present in grape must, is converted to softer-tasting lactic acid. Malolactic fermentation is most often performed as a secondary fermentation shortly after the end of the primary fermentation, but can sometimes run concurrently with it. The process is standard for most red wine production and common for some white grape varieties such as Chardonnay, where it can impart a "buttery" flavor from diacetyl, a byproduct of the reaction.

<span class="mw-page-title-main">Sweetness of wine</span> Subjective feature of taste of wine

The subjective sweetness of a wine is determined by the interaction of several factors, including the amount of sugar in the wine, but also the relative levels of alcohol, acids, and tannins. Sugars and alcohol enhance a wine's sweetness, while acids cause sourness and bitter tannins cause bitterness. These principles are outlined in the 1987 work by Émile Peynaud, The Taste of Wine.

<span class="mw-page-title-main">Ethanol fermentation</span> Biological process that produces ethanol and carbon dioxide as by-products

Ethanol fermentation, also called alcoholic fermentation, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing ethanol and carbon dioxide as by-products. Because yeasts perform this conversion in the absence of oxygen, alcoholic fermentation is considered an anaerobic process. It also takes place in some species of fish where it provides energy when oxygen is scarce.

<span class="mw-page-title-main">Kilju</span> Finnish home made alcoholic beverage

Kilju is the Finnish word for home made alcoholic beverage typically made of sugar, yeast, and water.

β-Fructofuranosidase is an enzyme that catalyzes the hydrolysis (breakdown) of the table sugar sucrose into fructose and glucose. Alternative names for β-fructofuranosidase EC 3.2.1.26 include invertase, saccharase, glucosucrase, β-fructosidase, invertin, fructosylinvertase, alkaline invertase, acid invertase, and the systematic name: β-fructofuranosidase. The resulting mixture of fructose and glucose is called inverted sugar syrup. Related to invertases are sucrases. Invertases and sucrases hydrolyze sucrose to give the same mixture of glucose and fructose. Invertase is a glycoprotein that hydrolyses (cleaves) the non-reducing terminal β-fructofuranoside residues. Invertases cleave the O-C(fructose) bond, whereas the sucrases cleave the O-C(glucose) bond. Invertase cleaves the α-1,2-glycosidic bond of sucrose.

<span class="mw-page-title-main">Fermentation in winemaking</span> Wine making process

The process of fermentation in winemaking turns grape juice into an alcoholic beverage. During fermentation, yeasts transform sugars present in the juice into ethanol and carbon dioxide. In winemaking, the temperature and speed of fermentation are important considerations as well as the levels of oxygen present in the must at the start of the fermentation. The risk of stuck fermentation and the development of several wine faults can also occur during this stage, which can last anywhere from 5 to 14 days for primary fermentation and potentially another 5 to 10 days for a secondary fermentation. Fermentation may be done in stainless steel tanks, which is common with many white wines like Riesling, in an open wooden vat, inside a wine barrel and inside the wine bottle itself as in the production of many sparkling wines.

Governo is a winemaking technique reportedly invented in Tuscany in the 14th century to help complete fermentation and stabilize the wine. The technique involves saving a batch of harvested grapes and allowing them to partially dry. If fermentation of the main batch starts to slow or appears to be nearing stuck fermentation, the half dried grapes are added to the must which then gives the yeast cells a new source of sugar to enliven the batch. From there, the must can be fermented dry or stopped with the wine having a higher level of residual sugar. The process was widely used in the Chianti zones until the advent of temperature controlled fermentation tanks. From Tuscany the technique spread to Marche and Umbria where it is sometimes used today. In the Marche the technique is most often used on wines made from the Verdicchio grape to counteract the grape's natural bitterness and to add some sweetness and frizzante qualities.

<span class="mw-page-title-main">Acids in wine</span>

The acids in wine are an important component in both winemaking and the finished product of wine. They are present in both grapes and wine, having direct influences on the color, balance and taste of the wine as well as the growth and vitality of yeast during fermentation and protecting the wine from bacteria. The measure of the amount of acidity in wine is known as the “titratable acidity” or “total acidity”, which refers to the test that yields the total of all acids present, while strength of acidity is measured according to pH, with most wines having a pH between 2.9 and 3.9. Generally, the lower the pH, the higher the acidity in the wine. There is no direct connection between total acidity and pH. In wine tasting, the term “acidity” refers to the fresh, tart and sour attributes of the wine which are evaluated in relation to how well the acidity balances out the sweetness and bitter components of the wine such as tannins. Three primary acids are found in wine grapes: tartaric, malic, and citric acids. During the course of winemaking and in the finished wines, acetic, butyric, lactic, and succinic acids can play significant roles. Most of the acids involved with wine are fixed acids with the notable exception of acetic acid, mostly found in vinegar, which is volatile and can contribute to the wine fault known as volatile acidity. Sometimes, additional acids, such as ascorbic, sorbic and sulfurous acids, are used in winemaking.

This glossary of winemaking terms lists some of terms and definitions involved in making wine, fruit wine, and mead.

<span class="mw-page-title-main">Autolysis (alcohol fermentation)</span>

Autolysis in winemaking relates to the complex chemical reactions that take place when a wine spends time in contact with the lees, or dead yeast cells, after fermentation. While for some wines - and all beers - autolysis is undesirable, it is a vital component in shaping the flavors and mouth feel associated with premium Champagne production. The practice of leaving a wine to age on its lees has a long history in winemaking dating back to Roman winemaking. The chemical process and details of autolysis were not originally understood scientifically, but the positive effects such as a creamy mouthfeel, breadlike and floral aromas, and reduced astringency were noticed early in the history of wine.

<span class="mw-page-title-main">Clarification and stabilization of wine</span> Wine clarification and stabilisation

In winemaking, clarification and stabilization are the processes by which insoluble matter suspended in the wine is removed before bottling. This matter may include dead yeast cells (lees), bacteria, tartrates, proteins, pectins, various tannins and other phenolic compounds, as well as pieces of grape skin, pulp, stems and gums. Clarification and stabilization may involve fining, filtration, centrifugation, flotation, refrigeration, pasteurization, and/or barrel maturation and racking.

<span class="mw-page-title-main">Ripeness in viticulture</span> How the term "ripe" is used in viticulture and winemaking

In viticulture, ripeness is the completion of the ripening process of wine grapes on the vine which signals the beginning of harvest. What exactly constitutes ripeness will vary depending on what style of wine is being produced and what the winemaker and viticulturist personally believe constitutes ripeness. Once the grapes are harvested, the physical and chemical components of the grape which will influence a wine's quality are essentially set so determining the optimal moment of ripeness for harvest may be considered the most crucial decision in winemaking.

<span class="mw-page-title-main">Yeast in winemaking</span> Yeasts used for alcoholic fermentation of wine

The role of yeast in winemaking is the most important element that distinguishes wine from fruit juice. In the absence of oxygen, yeast converts the sugars of the fruit into alcohol and carbon dioxide through the process of fermentation. The more sugars in the grapes, the higher the potential alcohol level of the wine if the yeast are allowed to carry out fermentation to dryness. Sometimes winemakers will stop fermentation early in order to leave some residual sugars and sweetness in the wine such as with dessert wines. This can be achieved by dropping fermentation temperatures to the point where the yeast are inactive, sterile filtering the wine to remove the yeast or fortification with brandy or neutral spirits to kill off the yeast cells. If fermentation is unintentionally stopped, such as when the yeasts become exhausted of available nutrients and the wine has not yet reached dryness, this is considered a stuck fermentation.

References

  1. 1 2 J. Robinson (ed) The Oxford Companion to Wine Third Edition pp. 665–66 Oxford University Press 2006 ISBN   0-19-860990-6
  2. J. Robinson (ed) "The Oxford Companion to Wine" Third Edition p. 317 Oxford University Press 2006 ISBN   0-19-860990-6
  3. J. Robinson (ed) "The Oxford Companion to Wine" Third Edition p. 290 Oxford University Press 2006 ISBN   0-19-860990-6
  4. Flash release and wine quality. Escudier J.L., Kotseridis Y. and Moutounet M., Progrès Agricole et Viticole, 2002 (French)
  5. Effect of Flash Release and Pectinolytic Enzyme Treatments on Wine Polysaccharide Composition. Thierry Doco, Pascale Williams and Véronique Cheynier, J. Agric. Food Chem., 2007, 55 (16), pp. 6643–49, doi : 10.1021/jf071427t