killer cell lectin-like receptor subfamily C, member 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | KLRC1 | ||||||
Alt. symbols | NKG2, NKG2-A, NKG2-B, CD159a | ||||||
NCBI gene | 3821 | ||||||
HGNC | 6374 | ||||||
OMIM | 161555 | ||||||
RefSeq | NM_007328 | ||||||
UniProt | P26715 | ||||||
Other data | |||||||
Locus | Chr. 12 p13 | ||||||
|
NKG2 also known as CD159 (Cluster of Differentiation 159) is a receptor for natural killer cells (NK cells). There are 7 NKG2 types: A, B, C, D, E, F and H. NKG2D is an activating receptor on the NK cell surface. NKG2A dimerizes with CD94 to make an inhibitory receptor (CD94/NKG2).
IPH2201 is a monoclonal antibody targeted at NKG2A. [1]
In both humans and mice, genes encoding the NKG2 family are clustered – in human genome on chromosome 12, in mouse on chromosome 6. [2] They are generally expressed on NK cells and a subset of CD8+ T cells, although the expression of NKG2D was also confirmed on γδ T cells, NKT cells, and even on some subsets of CD4+ T cells or myeloid cells. NKG2D expression can also be present on cancer cells and is proven to stimulate oncogenic bioenergetic metabolism, proliferation and metastases generation. [3]
On NK cells, NKG2 genes are expressed through the ontogeny as well as in adulthood. As about 90% of fetal NK cells express NKG2 genes, one of the proposed functions of the gene family is contribution to self-tolerance. [4] The level of expression of NKG2 genes is not constant, rather it is affected by cytokine environment (mainly interleukin-2 (IL-2), IL-7 and IL-15). [5]
For CD8+ T lymphocytes, NKG2 family expression is believed to be a marker of activated or memory T cells. The expression is triggered namely by IL-15, IL-12, IL-10 and TGF-β. CD94/NKG2 expression is shown to significantly increase the survival of T cells. [4]
NKG2 are members of the C-type lectin-like receptor superfamily. NKG2A, -B, -C, -E and -H form heterodimers with CD94, linked by disulfide bonds, whereas NKG2D forms homodimers. [6]
Inhibitory molecules NKG2A and its splice variant NKG2B contain immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the intracellular part of the molecule. Activatory molecules NKG2C, NKG2E and its splice variant NKG2H do not have an activating immunoreceptor tyrosine-based activation motifs (ITAMs) in their molecule. Rather, they contain a positively charged residue in their transmembrane regions by which they interact with adaptor molecules containing ITAMs, mainly DNAX-activating protein of 12 kDa (DAP-12). [4]
NKG2D pairs with either DAP-12 or DAP-10, depending on the isoform. There are two isoforms in mice – the long isoform (NKG2D-L) pairs only with DAP-10, whereas the short isoform (NKG2-S) can also pair with DAP-12. Only long isoform is present in humans. [6]
NKG2F also does not dimerize with CD94, rather it associates with DAP-12. It is only expressed on membranes of intracellular compartments. [2]
Inhibitory NKG2 molecules containing ITIMs recruite the Src homology 2 domain containing phosphatases SHP-1 and SHP-2, which leads to the inhibition of cytotoxicity. ITAMs, included in DAP-12, on the other hand, recruite the Src homology domain containing kinases Syk (spleen tyrosine kinase) or Zap70 (Zeta-chain-associated protein kinase 70). Kinase activation is followed by NK cell degranulation and transcription of cytokine and chemokine genes. [6]
DAP-10 connects to GRB2 or p85, leading to signalling through phosphoinositide 3-kinase (PI3K) and other molecules, leading to cytotoxicity. [6]
Ligands of CD94/NKG2 heterodimeric molecules are nonclassical MHC class I molecules – Qa1b molecules in mice and HLA-E in humans. These molecules both present sequences from the digested leading peptides of classical MHC class I molecules. This enables the monitoring of classical MHC class I expression on target cells. [6]
NKG2D recognizes mostly stress-induced proteins, namely human MHC class-I-chain related protein (MIC-A) and MIC-B, and also other stress-induced proteins common to humans and mice – retinoic acid early transcript 1 (Rae1) and RAET1 in humans, H60 and UL16-binding protein-like transcript 1 (Mult1) in mice, and the UL16-binding proteins (ULBPs) in humans. [3]
NKG2A was documented to promote survival in T cells. Along with its splice variant NKG2B, these molecules are inhibitory and lead to a decrease in cytotoxicity. NKG2C and NKG2E (and its splice variant NKG2H) recognize the same ligand with different (usually lower in physiological conditions) affinity. However, the affinity for HLA-E (or Qa1b) can drastically change after a small change in the presented peptide, which can lead to NK cell activation. [4]
CD94/NKG2 and their ligands can also play a role in certain diseases, where their expression can be modified on different cell types. These include viral and bacterial infections by HCMV, HIV-1 and Hepatitis virus type C (HCV) in humans, or LCMV, HSV-1, Influenza and Listeria monocytogenes infections in mice. In cancers, a role of CD94/NKG2 was demonstrated for melanoma, cervical cancer, lymphoma/leukemia and more. NKG2 match can also prevent graft versus leukemia effect (GvL) as well as the graft versus host disease (GvHD). [2]
NKG2D is an activating receptor playing a role in the cell-mediated control of some cancers. Many tumors avoid the cytotoxicity by excreting soluble NKG2D ligands or secreting TGF-β, leading to the downregulation of the NKG2D expression. NKG2D ligands are also upregulated by cells infected with viral pathogens. Certain viruses can produce proteins that block the expression of NKG2D ligands on the cell surface to decrease the recognition by NK cells, increasing virus pathogenicity. [3]
Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of innate lymphoid cells (ILC) and represent 5–20% of all circulating lymphocytes in humans. The role of NK cells is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virus-infected cell and other intracellular pathogens acting at around 3 days after infection, and respond to tumor formation. Typically, immune cells detect the major histocompatibility complex (MHC) presented on infected cell surfaces, triggering cytokine release, causing the death of the infected cell by lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize and kill stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the notion that they do not require activation to kill cells that are missing "self" markers of MHC class 1. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.
A Fc receptor is a protein found on the surface of certain cells – including, among others, B lymphocytes, follicular dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils, human platelets, and mast cells – that contribute to the protective functions of the immune system. Its name is derived from its binding specificity for a part of an antibody known as the Fc region. Fc receptors bind to antibodies that are attached to infected cells or invading pathogens. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity. Some viruses such as flaviviruses use Fc receptors to help them infect cells, by a mechanism known as antibody-dependent enhancement of infection.
Killer-cell immunoglobulin-like receptors (KIRs), are a family of type I transmembrane glycoproteins expressed on the plasma membrane of natural killer (NK) cells and a minority of T cells. At least 15 genes and 2 pseudogenes encoding KIR map in a 150-kb region of the leukocyte receptor complex (LRC) on human chromosome 19q13.4 They regulate the killing function of these cells by interacting with major histocompatibility (MHC) class I molecules, which are expressed on all nucleated cell types. KIR receptors can distinguish between major histocompatibility (MHC) class I allelic variants, which allows them to detect virally infected cells or transformed cells. KIRs are paired receptors with both activating and inhibitory functions; most KIRs are inhibitory, meaning that their recognition of MHC molecules suppresses the cytotoxic activity of their NK cell. Only a limited number of KIRs are activating, meaning that their recognition of MHC molecules activates the cytotoxic activity of their cell. Initial expression of KIRs on NK cells is stochastic, but there is an educational process that NK cells undergo as they mature that alters the expression of KIRs to maximize the balance between effective defense and self-tolerance. As a result of KIR's role in killing unhealthy self-cells and not killing healthy self-cells, KIRs are involved in protection against and propensity to viral infection, autoimmune disease, and cancer. KIR molecules are highly polymorphic, meaning that their gene sequences differ greatly between individuals, and polygenic so that it is extremely rare for two unrelated individuals to possess the same KIR genotype.
CD94, also known as killer cell lectin-like receptor subfamily D, member 1 (KLRD1) is a human gene.
An immunoreceptor tyrosine-based inhibitory motif (ITIM), is a conserved sequence of amino acids that is found intracellularly in the cytoplasmic domains of many inhibitory receptors of the non-catalytic tyrosine-phosphorylated receptor family found on immune cells. These immune cells include T cells, B cells, NK cells, dendritic cells, macrophages and mast cells. ITIMs have similar structures of S/I/V/LxYxxI/V/L, where x is any amino acid, Y is a tyrosine residue that can be phosphorylated, S is the amino acide Serine, I is the amino acid Isoleucine, and V is the amino acid Valine. ITIMs recruit SH2 domain-containing phosphatases, which inhibit cellular activation. ITIM-containing receptors often serve to target Immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, resulting in an innate inhibition mechanism within cells. ITIM bearing receptors have important role in regulation of immune system allowing negative regulation at different levels of the immune response.
Ly49 is a family of membrane C-type lectin-like receptors expressed mainly on NK cells but also on other immune cells. Their primary role is to bind MHC-I molecules to distinguish between self healthy cells and infected or altered cells. Ly49 family is coded by Klra gene cluster and include genes for both inhibitory and activating paired receptors, but most of them are inhibitory. Inhibitory Ly49 receptors play a role in the recognition of self cells and thus maintain self-tolerance and prevent autoimmunity by suppressing NK cell activation. On the other hand, activating receptors recognise ligands from cancer or viral infected cells and are used when cells lack or have abnormal expression of MHC-I molecules, which activate cytokine production and cytotoxic activity of NK and immune cells.
MHC class I polypeptide–related sequence A (MICA) is a highly polymorphic cell surface glycoprotein encoded by the MICA gene located within MHC locus. MICA is related to MHC class I and it has similar domain structure, however, it is not associated with β2-microglobulin nor binds peptides as conventional MHC class I molecules do. MICA rather functions as a stress-induced ligand (as a danger signal) for integral membrane protein receptor NKG2D ("natural-killer group 2, member D"). MICA is broadly recognized by NK cells, γδ T cells, and CD8+ αβ T cells which carry NKG2D receptor on their cell surface and which are activated via this interaction.
Leukocyte immunoglobulin-like receptor subfamily B member 1 is a protein that in humans is encoded by the LILRB1 gene.
TYRO protein tyrosine kinase-binding protein is an adapter protein that in humans is encoded by the TYROBP gene.
Natural cytotoxicity triggering receptor 3 is a protein that in humans is encoded by the NCR3 gene. NCR3 has also been designated as CD337 and as NKp30. NCR3 belongs to the family of NCR membrane receptors together with NCR1 (NKp46) and NCR2 (NKp44).
NKG2-F type II integral membrane protein is a protein that in humans is encoded by the KLRC4 gene.
Hematopoietic cell signal transducer is a protein that in humans is encoded by the HCST gene.
UL16 binding protein 2 (ULBP2) is a cell surface glycoprotein encoded by ULBP2 gene located on the chromosome 6. ULBP2 is related to MHC class I molecules, but its gene maps outside the MHC locus. The domain structure of ULBP2 differs significantly from those of conventional MHC class I molecules. It does not contain the α3 domain and the transmembrane segment. ULBP2 is thus composed of only the α1α2 domain which is linked to the cell membrane by the GPI anchor.
UL16 binding protein 1 (ULBP1) is a cell surface glycoprotein encoded by ULBP1 gene located on the chromosome 6. ULBP1 is related to MHC class I molecules, but its gene maps outside the MHC locus. The domain structure of ULBP1 differs significantly from those of conventional MHC class I molecules. It does not contain the α3 domain and the transmembrane segment. ULBP1 is thus composed of only the α1α2 domain which is linked to the cell membrane by the GPI anchor. It functions as a stress-induced ligand for NKG2D receptor. ULBP1 is, for example, upregulated during HCMV infection. Binding of HCMV-encoded UL16 glycoprotein to ULBP1 interferes with cell surface localization of ULBP1; this represents another mechanism by which HCMV-infected cells might escape the immune system.
Retinoic acid early transcript 1E(RAET1E) is a cell surface glycoprotein encoded by RAET1E gene located on the chromosome 6. RAET1E is related to MHC class I molecules, but its gene maps outside the MHC locus. RAET1E is composed of external α1α2 domain, transmembrane segment and C-terminal cytoplasmic tail. RAET1E functions as a stress-induced ligand for NKG2D receptor.
Fc fragment of IgA receptor (FCAR) is a human gene that codes for the transmembrane receptor FcαRI, also known as CD89. FcαRI binds the heavy-chain constant region of Immunoglubulin A (IgA) antibodies. FcαRI is present on the cell surface of myeloid lineage cells, including neutrophils, monocytes, macrophages, and eosinophils, though it is notably absent from intestinal macrophages and does not appear on mast cells. FcαRI plays a role in both pro- and anti-inflammatory responses depending on the state of IgA bound. Inside-out signaling primes FcαRI in order for it to bind its ligand, while outside-in signaling caused by ligand binding depends on FcαRI association with the Fc receptor gamma chain.
Killer Activation Receptors (KARs) are receptors expressed on the plasmatic membrane of Natural Killer cells. KARs work together with inhibitory receptors, which inactivate them in order to regulate the NK cells functions on hosted or transformed cells. These two kinds of specific receptors have some morphological features in common, such as being transmembrane proteins. The similarities are specially found in the extracellular domains and, the differences tend to be in the intracellular domains. KARs and KIRs can have tyrosine containing activatory or inhibitory motifs in the intracellular part of the receptor molecule.
NKG2D is an activating receptor (transmembrane protein) belonging to the NKG2 family of C-type lectin-like receptors. NKG2D is encoded by KLRK1 (killer cell lectin like receptor K1) gene which is located in the NK-gene complex (NKC) situated on chromosome 6 in mice and chromosome 12 in humans. In mice, it is expressed by NK cells, NK1.1+ T cells, γδ T cells, activated CD8+ αβ T cells and activated macrophages. In humans, it is expressed by NK cells, γδ T cells and CD8+ αβ T cells. NKG2D recognizes induced-self proteins from MIC and RAET1/ULBP families which appear on the surface of stressed, malignant transformed, and infected cells.
CD94/NKG2 is a family of C-type lectin receptors which are expressed predominantly on the surface of NK cells and a subset of CD8+ T-lymphocyte. These receptors stimulate or inhibit cytotoxic activity of NK cells, therefore they are divided into activating and inhibitory receptors according to their function. CD94/NKG2 recognize nonclassical MHC glycoproteins class I (HLA-E in human and Qa-1 molecules in the mouse).
Paired receptors are pairs or clusters of receptor proteins that bind to extracellular ligands but have opposing activating and inhibitory signaling effects. Traditionally, paired receptors are defined as homologous pairs with similar extracellular domains and different cytoplasmic regions, whose genes are located together in the genome as part of the same gene cluster and which evolved through gene duplication. Homologous paired receptors often, but not always, have a shared ligand in common. More broadly, pairs of receptors have been identified that exhibit paired functional behavior - responding to a shared ligand with opposing intracellular signals - but are not closely homologous or co-located in the genome. Paired receptors are highly expressed in the cells of the immune system, especially natural killer (NK) and myeloid cells, and are involved in immune regulation.