CD137

Last updated

CD137, a member of the tumor necrosis factor (TNF) receptor family, is a type 1 transmembrane protein, expressed on surfaces of leukocytes and non-immune cells. [1] Its alternative names are tumor necrosis factor receptor superfamily member 9 (TNFRSF9), 4-1BB, and induced by lymphocyte activation (ILA). It is of interest to immunologists as a co-stimulatory immune checkpoint molecule, and as a potential target in cancer immunotherapy.

Contents

TNFRSF9
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TNFRSF9 , 4-1BB, CD137, CDw137, ILA, tumor necrosis factor receptor superfamily member 9, TNF receptor superfamily member 9
External IDs OMIM: 602250 MGI: 1101059 HomoloGene: 1199 GeneCards: TNFRSF9
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001561

NM_001077508
NM_001077509
NM_011612

RefSeq (protein)

NP_001552

NP_001070976
NP_001070977
NP_035742

Location (UCSC) Chr 1: 7.92 – 7.94 Mb Chr 4: 151 – 151.03 Mb
PubMed search [4] [5]
Wikidata
View/Edit Human View/Edit Mouse

Expression

CD137 is only expressed on the cell surface after T cell activation. When T cells are activated by Antigen Presenting Cells (APCs), CD137 becomes embedded in CD4+ and CD8+ T cells.

CD137 is a costimulatory molecule functioning to stimulate T cell proliferation, dendritic cell maturation, and promotion of B cell antibody secretion. [6] As a T cell co-stimulator, T cell receptor (TCR) and CD28 signaling causes expression of CD137 on T cell membranes. When CD137 then reacts with the CD137 ligand, it leads to CD137 upregulation. [6] This is a form of self regulation or positive feedback cycle. When CD137 interacts with its ligand, it leads to T cell cytokine production and T cell proliferation, among other signaling pathway responses.

Other cells that express CD137 include both immune cells (i.e. monocytes, natural killer cells, dendritic cells, follicular dendritic cells (FDCs), and regulatory T cells) and non-immune cells (i.e. chondrocytes, neurons, astrocytes, microglia and endothelial cells). [6]

Regulation of the immune system

CD137 and its ligand both induce signaling cascades upon interaction, a phenomenon known as bidirectional signal transduction. The CD137/ligand complex is also involved in regulation of the immune system. The CD137 ligand is a type-II transmembrane glycoprotein expressed on APCs. [7] The CD137 ligand is normally expressed at low levels, but can have increased expression in presence of pathogen associated molecular patterns (PAMPs) or proinflammatory immune responses like IL-1 secretion.

Cross-linking CD137 and active T cells can not only result in T cell proliferation via increased IL-2 secretion, but surviving cells also contribute to expanding immune system memory and augmenting T cell cytolytic activity. [7]

Atherosclerosis

Inflammation

Atherosclerosis is a disease, linked to Cardiovascular Disease (CVD), and associated with cardiac inflammation, in the form of lesions in the walls of the atrial chambers and other vasculature. [8] Treatments designed to target the CD137 molecules expressed on immune cell surfaces often lead to T cell proliferation as CD137 stimulation allows for the T cells to continue through the cell cycle. In this way, CD137 is often referred to as an immune checkpoint. This proliferation eventually leads to other immune cell responses and secretion of proinflammatory cytokines which result in exaggerated inflammatory responses that exacerbate atherosclerosis. [8] Ongoing studies are researching CD137 as a biomarker for atherosclerosis as well as CD137 antagonists as potential therapeutics to reduce the symptoms associated with the condition.

Endothelial cells

The mechanism connecting CD137 bidirectional signaling to the promotion of atherosclerosis is related to CD137 mediation of epithelial cell damage. When the CD137/CD137L complex interacts with endothelial cells, including those lining vascular structures, it induces the upregulation of molecules that promote inflammation and damage. For instance, increases in adhesion molecules, including vascular adhesion molecule-1 or intracellular adhesion molecule-1, on epithelial cells causes recruitment of immune cells like macrophages and neutrophils. [9] When they arrive, these cells initiate proinflammatory responses including cytokine secretion. In chronic cases, this results in excessive inflammation of the epithelial tissue, leading to cell damage and the formation of atherosclerotic inflammatory lesions. [9]

Interactions

CD137 has been shown to interact with TRAF2. [10] [11]

As a drug target

Cancer immunotherapy

CD137 is also involved in cancer having been found upregulated in cancerous cell lines. CD137/ligand stimulation has been found to lead to stronger anti-tumor responses due to cytotoxic T cell activation and is being examined as a possible anticancer therapy. [12]

Current cancer immunotherapy treatments use monoclonal antibodies (mAbs) to target and kill cancer cells. Cancer cells upregulate cell surface CD137, however the reason behind this remains unclear. What is known is the fact that mAbs targeting CD137 are successful in fighting cancer as they can not only mark cancer cells, but they allow for CD8+ T cell activation and increased IFN-gamma secretion as per CD137’s function as a costimulatory molecule. [13] This enables the affected individual’s immune system to actively target and kill cancer cells that express CD137 on their cell surfaces. Currently, Utomilumab is the only mAb targeting CD137 on the market. [14] Urelumab trials were temporarily halted due to risk of liver toxicity. Utomilumab trials resulted in the drug’s being cleared for therapeutic use.

Utomilumab

Utomilumab (PF-05082566) targets this receptor to stimulate a more intense immune system attack on cancers. [15] It is a fully human IgG2 monoclonal antibody. [16] It is in early clinical trials. [15] As of June 2016, 5 clinical trials are active. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain.

<span class="mw-page-title-main">TRAIL</span> Mammalian protein

In the field of cell biology, TNF-related apoptosis-inducing ligand (TRAIL), is a protein functioning as a ligand that induces the process of cell death called apoptosis.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in Homo sapiens

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

<span class="mw-page-title-main">RANK</span> Mammalian protein found in Homo sapiens

Receptor activator of nuclear factor κ B (RANK), also known as TRANCE receptor or TNFRSF11A, is a member of the tumor necrosis factor receptor (TNFR) molecular sub-family. RANK is the receptor for RANK-Ligand (RANKL) and part of the RANK/RANKL/OPG signaling pathway that regulates osteoclast differentiation and activation. It is associated with bone remodeling and repair, immune cell function, lymph node development, thermal regulation, and mammary gland development. Osteoprotegerin (OPG) is a decoy receptor for RANKL, and regulates the stimulation of the RANK signaling pathway by competing for RANKL. The cytoplasmic domain of RANK binds TRAFs 1, 2, 3, 5, and 6 which transmit signals to downstream targets such as NF-κB and JNK.

<span class="mw-page-title-main">TNF receptor superfamily</span> Protein superfamily of cytokine receptors

The tumor necrosis factor receptor superfamily (TNFRSF) is a protein superfamily of cytokine receptors characterized by the ability to bind tumor necrosis factors (TNFs) via an extracellular cysteine-rich domain. With the exception of nerve growth factor (NGF), all TNFs are homologous to the archetypal TNF-alpha. In their active form, the majority of TNF receptors form trimeric complexes in the plasma membrane. Accordingly, most TNF receptors contain transmembrane domains (TMDs), although some can be cleaved into soluble forms, and some lack a TMD entirely. In addition, most TNF receptors require specific adaptor protein such as TRADD, TRAF, RIP and FADD for downstream signalling. TNF receptors are primarily involved in apoptosis and inflammation, but they can also take part in other signal transduction pathways, such as proliferation, survival, and differentiation. TNF receptors are expressed in a wide variety of tissues in mammals, especially in leukocytes.

<span class="mw-page-title-main">RANKL</span> Mammalian protein found in Homo sapiens

Receptor activator of nuclear factor kappa-Β ligand (RANKL), also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiation factor (ODF), is a protein that in humans is encoded by the TNFSF11 gene.

Lymphotoxin is a member of the tumor necrosis factor (TNF) superfamily of cytokines, whose members are responsible for regulating the growth and function of lymphocytes and are expressed by a wide variety of cells in the body.

<span class="mw-page-title-main">CD134</span> Protein-coding gene in humans

Tumor necrosis factor receptor superfamily, member 4 (TNFRSF4), also known as CD134 and OX40 receptor, is a member of the TNFR-superfamily of receptors which is not constitutively expressed on resting naïve T cells, unlike CD28. OX40 is a secondary co-stimulatory immune checkpoint molecule, expressed after 24 to 72 hours following activation; its ligand, OX40L, is also not expressed on resting antigen presenting cells, but is following their activation. Expression of OX40 is dependent on full activation of the T cell; without CD28, expression of OX40 is delayed and of fourfold lower levels.

OX40L is the ligand for OX40 and is stably expressed on many antigen-presenting cells such as DC2s, macrophages, and activated B lymphocytes.

<span class="mw-page-title-main">TNFSF9</span> Mammalian protein found in Homo sapiens

Tumor necrosis factor ligand superfamily member 9 also known as 4-1BB ligand or 4-1BBL or CD137L is a protein that in humans is encoded by the TNFSF9 gene.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">TRADD</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor type 1-associated DEATH domain protein is a protein that in humans is encoded by the TRADD gene.

<span class="mw-page-title-main">CD27</span> Member of the tumor necrosis factor receptor superfamily.

CD27 is a member of the tumor necrosis factor receptor superfamily. It is currently of interest to immunologists as a co-stimulatory immune checkpoint molecule, and is the target of an anti-cancer drug in clinical trials.

<span class="mw-page-title-main">LIGHT (protein)</span> Secreted protein of the TNF superfamily

LIGHT, also known as tumor necrosis factor superfamily member 14 (TNFSF14), is a secreted protein of the TNF superfamily. It is recognized by herpesvirus entry mediator (HVEM), as well as decoy receptor 3.

<span class="mw-page-title-main">Herpesvirus entry mediator</span> Protein-coding gene in the species Homo sapiens

Herpesvirus entry mediator (HVEM), also known as tumor necrosis factor receptor superfamily member 14 (TNFRSF14), is a human cell surface receptor of the TNF-receptor superfamily.

<span class="mw-page-title-main">TNFRSF18</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced TNFR-related protein (GITR) or CD357. GITR is encoded and tnfrsf18 gene at chromosome 4 in mice. GITR is type I transmembrane protein and is described in 4 different isoforms. GITR human orthologue, also called activation-inducible TNFR family receptor (AITR), is encoded by the TNFRSF18 gene at chromosome 1.

<span class="mw-page-title-main">TNFSF18</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor ligand superfamily member 18 is a protein that in humans is encoded by the TNFSF18 gene.

<span class="mw-page-title-main">Tumor necrosis factor receptor 2</span> Membrane receptor protein found in humans

Tumor necrosis factor receptor 2 (TNFR2), also known as tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) and CD120b, is one of two membrane receptors that binds tumor necrosis factor-alpha (TNFα). Like its counterpart, tumor necrosis factor receptor 1 (TNFR1), the extracellular region of TNFR2 consists of four cysteine-rich domains which allow for binding to TNFα. TNFR1 and TNFR2 possess different functions when bound to TNFα due to differences in their intracellular structures, such as TNFR2 lacking a death domain (DD).

Urelumab is a fully human, non‐ligand binding, CD137 agonist immunoglobulin‐γ 4 (IgG4) monoclonal antibody. It was developed utilizing Medarex's UltiMAb(R) technology by Bristol-Myers Squibb for the treatment of cancer and solid tumors. Urelumab promotes anti-tumor immunity, or an immune response against tumor cells, via CD137 activation. The application of Urelumab has been limited due to the fact that it can cause severe liver toxicity.

<span class="mw-page-title-main">Immune checkpoint</span> Regulators of the immune system

Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. However, some cancers can protect themselves from attack by stimulating immune checkpoint targets.

References

  1. Thum E, Shao Z, Schwarz H (January 2009). "CD137, implications in immunity and potential for therapy". Frontiers in Bioscience. 14 (11): 4173–4188. doi: 10.2741/3521 . PMID   19273343.
  2. 1 2 3 GRCh38: Ensembl release 89: ENSG00000049249 - Ensembl, May 2017
  3. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028965 - Ensembl, May 2017
  4. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  6. 1 2 3 Thum E, Shao Z, Schwarz H (January 2009). "CD137, implications in immunity and potential for therapy". Frontiers in Bioscience. 14 (11): 4173–4188. doi: 10.2741/3521 . PMID   19273343.
  7. 1 2 Thum E, Shao Z, Schwarz H (January 2009). "CD137, implications in immunity and potential for therapy". Frontiers in Bioscience. 14 (11): 4173–4188. doi: 10.2741/3521 . PMID   19273343.
  8. 1 2 Söderström LÅ, Tarnawski L, Olofsson PS (May 2018). "CD137: A checkpoint regulator involved in atherosclerosis". Atherosclerosis. 272: 66–72. doi:10.1016/j.atherosclerosis.2018.03.007. PMID   29571029.
  9. 1 2 Yuan W, Xu C, Li B, Xia H, Pan Y, Zhong W, et al. (June 2021). "Contributions of Costimulatory Molecule CD137 in Endothelial Cells". Journal of the American Heart Association. 10 (11): e020721. doi:10.1161/JAHA.120.020721. PMC   8483511 . PMID   34027676.
  10. Jang IK, Lee ZH, Kim YJ, Kim SH, Kwon BS (January 1998). "Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-kappa B". Biochemical and Biophysical Research Communications. 242 (3): 613–620. doi:10.1006/bbrc.1997.8016. PMID   9464265.
  11. Arch RH, Thompson CB (January 1998). "4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB". Molecular and Cellular Biology. 18 (1): 558–565. doi:10.1128/MCB.18.1.558. PMC   121523 . PMID   9418902.
  12. Makkouk A, Chester C, Kohrt HE (February 2016). "Rationale for anti-CD137 cancer immunotherapy". European Journal of Cancer. 54: 112–119. doi:10.1016/j.ejca.2015.09.026. PMID   26751393.
  13. Chu DT, Bac ND, Nguyen KH, Tien NL, Thanh VV, Nga VT, et al. (April 2019). "An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer". International Journal of Molecular Sciences. 20 (8): 1822. doi: 10.3390/ijms20081822 . PMC   6515339 . PMID   31013788.
  14. Jhajj HS, Lwo TS, Yao EL, Tessier PM (January 2023). "Unlocking the potential of agonist antibodies for treating cancer using antibody engineering". Trends in Molecular Medicine. 29 (1): 48–60. doi:10.1016/j.molmed.2022.09.012. PMC  9742327. PMID   36344331.
  15. 1 2 "Pfizer cancer drug shows promise in combo with Merck's Keytruda". Reuters. May 2016.
  16. Thall A (May 2016). Phase 1 Study of Utomilumab (PF-05082566) In Combination with Rituximab in Patients with CD20+ NHL (PDF). New Therapies in Hematology. Bologna, Italy. Study B1641001).
  17. "PF-05082566 clinical trials". clinicaltrials.gov.

Further reading