Dipeptidyl peptidase-4

Last updated
DPP4
1PFQ.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DPP4 , ADABP, ADCP2, CD26, DPPIV, TP103, dipeptidyl peptidase 4
External IDs OMIM: 102720 MGI: 94919 HomoloGene: 3279 GeneCards: DPP4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001935

NM_001159543
NM_010074

RefSeq (protein)

NP_001926
NP_001366533
NP_001366534
NP_001366535

NP_001153015
NP_034204

Location (UCSC) Chr 2: 161.99 – 162.07 Mb Chr 2: 62.16 – 62.24 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Dipeptidyl peptidase-4 (DPP4 or DPPIV), also known as adenosine deaminase complexing protein 2 or CD26 (cluster of differentiation 26) is a protein that, in humans, is encoded by the DPP4 gene. [5] DPP4 is related to FAP, DPP8, and DPP9. The enzyme was discovered in 1966 by Hopsu-Havu and Glenner, [6] and as a result of various studies on chemism, was called dipeptidyl peptidase IV [DP IV].

Function

The protein encoded by the DPP4 gene is an enzyme expressed on the surface of most cell types and is associated with immune regulation, signal transduction, and apoptosis. It is a type II transmembrane glycoprotein, but a soluble form, which lacks the intracellular and transmembrane part, is present in blood plasma and various body fluids. DPP-4 is a serine exopeptidase that cleaves X-proline or X-alanine dipeptides from the N-terminus of polypeptides. Peptide bonds involving the cyclic amino acid proline cannot be cleaved by the majority of proteases and an N-terminal X-proline "shields" various biopeptides. [7] Extracellular proline-specific proteases therefore play an important role in the regulation of these biopeptides.

DPP-4 is known to cleave a broad range of substrates including growth factors, chemokines, neuropeptides, and vasoactive peptides. [8] [9] The cleaved substrates lose their biological activity in the majority of cases, but in the case of the chemokine RANTES and neuropeptide Y, DPP-4 mediated cleavage leads to a shift in the receptor subtype binding. [8]

DPP4 plays a major role in glucose metabolism. It is responsible for the degradation of incretins such as GLP-1. [10] Furthermore, it appears to work as a suppressor in the development of some tumors. [11] [12] [13] [14]

DPP-4 also binds the enzyme adenosine deaminase specifically and with high affinity. The significance of this interaction has yet to be established.

Animal studies

Animal studies suggest its pathogenetic role in development of fibrosis of various organs, such as liver and kidney. [15] [16]

Clinical significance

CD26/DPPIV plays an important role in tumor biology, and is useful as a marker for various cancers, with its levels either on the cell surface or in the serum increased in some neoplasms and decreased in others. [17]

A class of oral hypoglycemics called dipeptidyl peptidase-4 inhibitors works by inhibiting the action of this enzyme, thereby prolonging incretin effect in vivo. [18]

Middle East respiratory syndrome coronavirus has been found to bind to DPP4. It is found on the surface of cells in the airways (such as the lungs) and kidneys. Scientists may be able to use this to their advantage by blocking the virus's entry into the cell. [19]

DPP4, [20] or its Mycobacterial homologue MtDPP, [21] might play a role in the pathogenesis of tuberculosis via cleavage of the chemokine C-X-C motif chemokine ligand 10 (CXCL10).

See also

Related Research Articles

<span class="mw-page-title-main">Vildagliptin</span> Chemical compound

Vildagliptin, sold under the brand name Galvus and others, is an oral anti-hyperglycemic agent of the dipeptidyl peptidase-4 (DPP-4) inhibitor class of drugs. Vildagliptin inhibits the inactivation of GLP-1 and GIP by DPP-4, allowing GLP-1 and GIP to potentiate the secretion of insulin in the beta cells and suppress glucagon release by the alpha cells of the islets of Langerhans in the pancreas.

<span class="mw-page-title-main">Dipeptidyl peptidase-4 inhibitor</span> Enzyme blocker and diabetes treatment drug

Inhibitors of dipeptidyl peptidase 4 are a class of oral hypoglycemics that block the enzyme dipeptidyl peptidase-4 (DPP-4). They can be used to treat diabetes mellitus type 2.

<span class="mw-page-title-main">Saxagliptin</span> Chemical compound

Saxagliptin, sold under the brand name Onglyza, is an oral hypoglycemic of the dipeptidyl peptidase-4 (DPP-4) inhibitor class. Early development was solely by Bristol-Myers Squibb; in 2007 AstraZeneca joined with Bristol-Myers Squibb to co-develop the final compound and collaborate on the marketing of the drug.

<span class="mw-page-title-main">CCL22</span> Mammalian protein found in Homo sapiens

C-C motif chemokine 22 is a protein that in humans is encoded by the CCL22 gene.

<span class="mw-page-title-main">Prolyl endopeptidase</span>

Prolyl endopeptidase (PE) also known as prolyl oligopeptidase or post-proline cleaving enzyme is an enzyme that in humans is encoded by the PREP gene.

<span class="mw-page-title-main">Fibroblast activation protein, alpha</span>

Fibroblast activation protein alpha (FAP-alpha) also known as prolyl endopeptidase FAP is an enzyme that in humans is encoded by the FAP gene.

<span class="mw-page-title-main">DPP3</span> Protein-coding gene in the species Homo sapiens

Dipeptidyl-peptidase 3 is an enzyme that in humans is encoded by the DPP3 gene.

<span class="mw-page-title-main">Attractin</span> Protein-coding gene in the species Homo sapiens

Attractin is a protein that in humans is encoded by the ATRN gene.

<span class="mw-page-title-main">DPP7</span> Protein-coding gene in the species Homo sapiens

Dipeptidyl-peptidase 2 is an enzyme that in humans is encoded by the DPP7 gene.

<span class="mw-page-title-main">DPP8</span> Protein-coding gene in humans

Dipeptidyl peptidase 8 is an enzyme that in humans is encoded by the DPP8 gene.

<span class="mw-page-title-main">XPNPEP1</span> Protein-coding gene in the species Homo sapiens

Xaa-Pro aminopeptidase 1 is an enzyme that in humans is encoded by the XPNPEP1 gene.

<span class="mw-page-title-main">DPP9</span> Protein-coding gene in humans

Dipeptidyl peptidase 9 is an enzyme that in humans is encoded by the DPP9 gene.

Dipeptidyl peptidase-4 inhibitors are enzyme inhibitors that inhibit the enzyme dipeptidyl peptidase-4 (DPP-4). They are used in the treatment of type 2 diabetes mellitus. Inhibition of the DPP-4 enzyme prolongs and enhances the activity of incretins that play an important role in insulin secretion and blood glucose control regulation. Type 2 diabetes mellitus is a chronic metabolic disease that results from inability of the β-cells in the pancreas to secrete sufficient amounts of insulin to meet the body's needs. Insulin resistance and increased hepatic glucose production can also play a role by increasing the body's demand for insulin. Current treatments, other than insulin supplementation, are sometimes not sufficient to achieve control and may cause undesirable side effects, such as weight gain and hypoglycemia. In recent years, new drugs have been developed, based on continuing research into the mechanism of insulin production and regulation of the metabolism of sugar in the body. The enzyme DPP-4 has been found to play a significant role.

Prolyl aminopeptidase is an enzyme. This enzyme catalyses the following chemical reaction

Xaa-Pro dipeptidyl-peptidase (EC 3.4.14.11, X-prolyl dipeptidyl aminopeptidase, PepX, X-prolyl dipeptidyl peptidase is an enzyme. It catalyses the following chemical reaction

Xaa-Xaa-Pro tripeptidyl-peptidase is an enzyme. It catalyses the following chemical reaction

<span class="mw-page-title-main">Daniel J. Drucker</span> Canadian endocrinologist (born 1956)

Daniel Joshua Drucker is a Canadian endocrinologist. A Fellow of the Royal Society, he is a professor of medicine at the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto. He is known for his research into intestinal hormones and their use in the treatment of diabetes, obesity, and other metabolic diseases, as well as intestinal failure.

<span class="mw-page-title-main">Trelagliptin</span> Chemical compound

Trelagliptin is a pharmaceutical drug used for the treatment of type 2 diabetes.

<span class="mw-page-title-main">Omarigliptin</span> Chemical compound

Omarigliptin (MK-3102) is a potent, long-acting oral antidiabetic drug of the DPP-4 inhibitor class used for once-weekly treatment of type 2 diabetes and currently under development by Merck & Co. It inhibits DPP-4 to increase incretin levels, which inhibit glucagon release, which in turn increases insulin secretion, decreases gastric emptying and decreases blood glucose levels.

<span class="mw-page-title-main">Evogliptin</span> Chemical compound

Evogliptin is an antidiabetic drug in the dipeptidyl peptidase-4 (DPP-4) inhibitor or "gliptin" class of drugs. It was developed by the South Korean pharmaceutical company Dong-A ST and is approved for use in South Korea and Russia. In a meta-analysis involving data from 6 randomized controlled trials, Dutta et. al. demonstrated the good glycaemic efficacy and safety of this medicine as compared to other DPP4 inhibitors like sitagliptin and linagliptin.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000197635 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000035000 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C (July 1993). "Direct association of adenosine deaminase with a T cell activation antigen, CD26". Science. 261 (5120): 466–9. Bibcode:1993Sci...261..466K. doi:10.1126/science.8101391. PMID   8101391.
  6. Hopsu-Havu VK, Glenner GG (1966). "A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide". Histochemie. Histochemistry. Histochimie. 7 (3): 197–201. doi:10.1007/bf00577838. PMID   5959122. S2CID   9674831.
  7. Vanhoof G, Goossens F, De Meester I, Hendriks D, Scharpé S (June 1995). "Proline motifs in peptides and their biological processing". FASEB Journal. 9 (9): 736–44. doi: 10.1096/fasebj.9.9.7601338 . PMID   7601338. S2CID   37551773.
  8. 1 2 Mentlein R (November 1999). "Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides". Regulatory Peptides. 85 (1): 9–24. doi:10.1016/S0167-0115(99)00089-0. PMID   10588446. S2CID   22354304.
  9. Chen X (2006). "Biochemical properties of recombinant prolyl dipeptidases DPP-IV and DPP8". Dipeptidyl Aminopeptidases. Advances in Experimental Medicine and Biology. Vol. 575. pp. 27–32. doi:10.1007/0-387-32824-6_3. ISBN   978-0-387-29058-4. PMID   16700505.
  10. Barnett A (November 2006). "DPP-4 inhibitors and their potential role in the management of type 2 diabetes". International Journal of Clinical Practice. 60 (11): 1454–70. doi: 10.1111/j.1742-1241.2006.01178.x . PMID   17073841. S2CID   2645092.
  11. Pro B, Dang NH (October 2004). "CD26/dipeptidyl peptidase IV and its role in cancer". Histology and Histopathology. 19 (4): 1345–51. doi:10.14670/HH-19.1345. PMID   15375776.
  12. Masur K, Schwartz F, Entschladen F, Niggemann B, Zaenker KS (December 2006). "DPPIV inhibitors extend GLP-2 mediated tumour promoting effects on intestinal cancer cells". Regulatory Peptides. 137 (3): 147–55. doi:10.1016/j.regpep.2006.07.003. PMID   16908079. S2CID   2857735.
  13. Wesley UV, McGroarty M, Homoyouni A (February 2005). "Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway". Cancer Research. 65 (4): 1325–34. doi:10.1158/0008-5472.CAN-04-1852. PMID   15735018.
  14. Busek P, Malík R, Sedo A (March 2004). "Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer". The International Journal of Biochemistry & Cell Biology. 36 (3): 408–21. doi:10.1016/S1357-2725(03)00262-0. PMID   14687920.
  15. Kaji K, Yoshiji H, Ikenaka Y, Noguchi R, Aihara Y, Douhara A, Moriya K, Kawaratani H, Shirai Y, Yoshii J, Yanase K, Kitade M, Namisaki T, Fukui H (March 2014). "Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats". Journal of Gastroenterology. 49 (3): 481–91. doi:10.1007/s00535-013-0783-4. PMID   23475323. S2CID   2726091.
  16. Min HS, Kim JE, Lee MH, Song HK, Kang YS, Lee MJ, Lee JE, Kim HW, Cha JJ, Chung YY, Hyun YY, Han JY, Cha DR (June 2014). "Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction". Laboratory Investigation; A Journal of Technical Methods and Pathology. 94 (6): 598–607. doi: 10.1038/labinvest.2014.50 . PMID   24687121. S2CID   23745972.
  17. Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH (January 2008). "The role of CD26/dipeptidyl peptidase IV in cancer". Frontiers in Bioscience. 13 (13): 1634–45. doi: 10.2741/2787 . PMID   17981655.
  18. Rosenstock J, Zinman B (April 2007). "Dipeptidyl peptidase-4 inhibitors and the management of type 2 diabetes mellitus". Current Opinion in Endocrinology, Diabetes and Obesity. 14 (2): 98–107. doi:10.1097/MED.0b013e3280a02f65. PMID   17940427. S2CID   25482131.
  19. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL (March 2013). "Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC". Nature. 495 (7440): 251–4. Bibcode:2013Natur.495..251R. doi:10.1038/nature12005. PMC   7095326 . PMID   23486063.
  20. Blauenfeldt T, Petrone L, Del Nonno F, Baiocchini A, Falasca L, Chiacchio T, Bondet V, Vanini V, Palmieri F, Galluccio G, Casrouge A, Eugen-Olsen J, Albert ML, Goletti D, Duffy D, Ruhwald M (Jul 2018). "Interplay of DDP4 and IP-10 as a Potential Mechanism for Cell Recruitment to Tuberculosis Lesions". Front Immunol. 9 (1456): 1456. doi: 10.3389/fimmu.2018.01456 . PMC   6041415 . PMID   30026741.
  21. Lioe TS, Xie Z, Wu J, Li W, Sun L, Feng Q, Raju S, Tefsen B, Ruiz-Carrillo D (Jan 2023). "The Mycobacterium tuberculosis prolyl dipeptidyl peptidase cleaves the N-terminal peptide of the immunoprotein CXCL-10". Biol Chem. 404 (6): 633–43. doi: 10.1515/hsz-2022-0265 . PMID   36632703. S2CID   255596512.

Further reading