PROCR | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | PROCR , CCCA, CCD41, EPCR, protein C receptor | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 600646; MGI: 104596; HomoloGene: 4670; GeneCards: PROCR; OMA:PROCR - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Endothelial protein C receptor (EPCR) also known as activated protein C receptor (APC receptor) is a protein that in humans is encoded by the PROCR gene. [5] [6] [7] PROCR has also recently been designated CD201 (cluster of differentiation 201).
EPCR is a transmembrane glycoprotein receptor that plays a crucial role in regulation of blood coagulation, inflammation, and vascular integrity. Its ability to enhance the anticoagulant activity of protein C, modulate inflammatory responses, and maintain endothelial barrier function highlights its importance in homeostasis maintenance. [8]
EPCR protein is an N-glycosylated type I membrane protein that enhances the activation of protein C. [7] It belongs to the MHC class I/CD1 family of proteins, The structure of CD201 consists of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. The extracellular domain of CD201 contains a high-affinity binding site for activated protein C (APC), a serine protease with anticoagulant properties. [8] The binding site for APC resembles a deep groove with a lipid inside. The bound lipid in EPCR is usually phosphatidylcholine or phosphatidylethanolamine, and it contributes to APC binding [9]
CD201 is expressed on the surface of endothelial cells, which form the inner lining of blood vessels. CD201 has also been identified as hematopoietic stem cell (HSC) marker. [10] [11]
The main function of CD201 is to enhance the activation of protein C. The binding of APC to EPCR on the endothelial cell surface facilitates its anticoagulant activity by inhibiting factors Va and VIIIa. Apart from its anticoagulant role, CD201 also participates in an anti-inflammatory signaling. CD201 has been shown to affect the production of inflammatory cytokines upon binding a coagulation factor VIIa. [12]
CD201 is gaining recognition as a marker in patients with acute infections as well as in patients with vascular diseases. Recently, CD201 has been studied in relationship with rheumatoid arthritis.
In a recent study on emergency granulopoiesis, it has been observed that CD201 is highly expressed on lymphoid-biased HSCs under steady-state conditions. However, during emergency granulopoiesis, the loss of CD201 marked a transcriptional switch from a lymphoid to a myeloid identity in HSCs. These findings suggest that CD201 is involved in the regulation of the response to acute infection. [13] As with many signaling molecules, the context of their effect matters. It has been mentioned above that CD201 has anti-inflammatory properties during coagulation. However, in a rheumatoid arthritis (RA) murine model it has been shown that CD201 knock-out (KO) mice had 40% lower arthritis incidence and 50% less disease severity compared to wild-type (WT) mice. CD201 KO mice also had significantly fewer Th1/Th17 cells in synovial tissues, which implies that CD201 may play a role in the regulation of immune cell populations involved in the pathogenesis of RA. [14]
The importance of CD201 as a clinical marker has been demonstrated in another study where decreased patient serum levels of CD201 have been associated with vascular dysfunctions. [15]
Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The process of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.
Prothrombin is encoded in the human by the F2-gene. It is proteolytically cleaved during the clotting process by the prothrombinase enzyme complex to form thrombin.
Coagulation factor VII is a protein involved in coagulation and, in humans, is encoded by gene F7. It is an enzyme of the serine protease class. Once bound to tissue factor released from damaged tissues, it is converted to factor VIIa, which in turn activates factor IX and factor X.
Protein C, also known as autoprothrombin IIA and blood coagulation factor XIV, is a zymogen, that is, an inactive enzyme. The activated form plays an important role in regulating anticoagulation, inflammation, and cell death and maintaining the permeability of blood vessel walls in humans and other animals. Activated protein C (APC) performs these operations primarily by proteolytically inactivating proteins Factor Va and Factor VIIIa. APC is classified as a serine protease since it contains a residue of serine in its active site. In humans, protein C is encoded by the PROC gene, which is found on chromosome 2.
Protease-activated receptors (PAR) are a subfamily of related G protein-coupled receptors that are activated by cleavage of part of their extracellular domain. They are highly expressed in platelets, and also on endothelial cells, fibroblasts, immune cells, myocytes, neurons, and tissues that line the gastrointestinal tract.
Tissue factor, also called platelet tissue factor or Coagulation factor III, is a protein present in subendothelial tissue and leukocytes which plays a major role in coagulation and, in humans, is encoded by F3 gene. Its role in the blood clotting is the initiation of thrombin formation from the zymogen prothrombin. Thromboplastin defines the cascade that leads to the activation of factor X—the tissue factor pathway. In doing so, it has replaced the previously named extrinsic pathway in order to eliminate ambiguity.
The prothrombinase enzyme complex consists of factor Xa (a serine protease) and factor Va (a protein cofactor). The complex assembles on negatively charged phospholipid membranes in the presence of calcium ions. The prothrombinase complex catalyzes the conversion of prothrombin (factor II), an inactive zymogen, to thrombin (factor IIa), an active serine protease. The activation of thrombin is a critical reaction in the coagulation cascade, which functions to regulate hemostasis in the body. To produce thrombin, the prothrombinase complex cleaves two peptide bonds in prothrombin, one after Arg271 and the other after Arg320. Although it has been shown that factor Xa can activate prothrombin when unassociated with the prothrombinase complex, the rate of thrombin formation is severely decreased under such circumstances. The prothrombinase complex can catalyze the activation of prothrombin at a rate 3 x 105-fold faster than can factor Xa alone. Thus, the prothrombinase complex is required for the efficient production of activated thrombin and also for adequate hemostasis.
Thrombomodulin (TM), CD141 or BDCA-3 is an integral membrane protein expressed on the surface of endothelial cells and serves as a cofactor for thrombin. It reduces blood coagulation by converting thrombin to an anticoagulant enzyme from a procoagulant enzyme. Thrombomodulin is also expressed on human mesothelial cell, monocyte and a dendritic cell subset.
Heparin cofactor II (HCII), a protein encoded by the SERPIND1 gene, is a coagulation factor that inhibits IIa, and is a cofactor for heparin and dermatan sulfate.
β2-glycoprotein 1, also known as beta-2 glycoprotein 1 and Apolipoprotein H (Apo-H), is a 38 kDa multifunctional plasma protein that in humans is encoded by the APOH gene. One of its functions is to bind cardiolipin. When bound, the structure of cardiolipin and β2-GP1 both undergo large changes in structure. Within the structure of Apo-H is a stretch of positively charged amino acids, Lys-Asn-Lys-Glu-Lys-Lys, are involved in phospholipid binding.
Tyrosine-protein phosphatase non-receptor type 6, also known as Src homology region 2 domain-containing phosphatase-1 (SHP-1), is an enzyme that in humans is encoded by the PTPN6 gene.
Integrin alpha-IIb is a protein that in humans is encoded by the ITGA2B gene. ITGA2B, also known as CD41, encodes integrin alpha chain 2b. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. Alpha chain 2b undergoes post-translational cleavage to yield disulfide-linked light and heavy chains that join with beta 3 to form a fibrinogen receptor expressed in platelets that plays a crucial role in coagulation. Mutations that interfere with this role result in thrombasthenia. At least 38 disease-causing mutations in this gene have been discovered. In addition to adhesion, integrins are known to participate in cell-surface mediated signalling.
Protease activated receptor 3 (PAR-3) also known as coagulation factor II receptor-like 2 (F2RL2) and thrombin receptor-like 2, is a protein that in humans is encoded by the F2RL2 gene.
Protein S is a vitamin K-dependent plasma glycoprotein synthesized in the liver. In the circulation, Protein S exists in two forms: a free form and a complex form bound to complement protein C4b-binding protein (C4BP). In humans, protein S is encoded by the PROS1 gene. Protein S plays a role in coagulation.
Protease-activated receptor 4 (PAR-4), also known as coagulation factor II (thrombin) receptor-like 3, is a protein that in humans is encoded by the F2RL3 gene.
Carboxypeptidase B2 (CPB2), also known as carboxypeptidase U (CPU), plasma carboxypeptidase B (pCPB) or thrombin-activatable fibrinolysis inhibitor (TAFI), is an enzyme that, in humans, is encoded by the gene CPB2.
Glycoprotein V (platelet) (GP5) also known as CD42d (Cluster of Differentiation 42d), is a human gene.
Multimerin 1, also known as elastin microfibril interfacer 4 (EMILIN-4), is a protein that, in humans, is encoded by the MMRN1 gene.
Thrombodynamics test is a method for blood coagulation monitoring and anticoagulant control. This test is based on imitation of coagulation processes occurring in vivo, is sensitive both to pro- and anticoagulant changes in the hemostatic balance. Highly sensitive to thrombosis.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.