ICOSLG

Last updated
ICOSLG
Identifiers
Aliases ICOSLG , B7-H2, B7H2, B7RP-1, B7RP1, CD275, GL50, ICOS-L, ICOSL, LICOS, inducible T-cell co-stimulator ligand, inducible T-cell costimulator ligand, inducible T cell costimulator ligand, B7h
External IDs OMIM: 605717; MGI: 1354701; HomoloGene: 49412; GeneCards: ICOSLG; OMA:ICOSLG - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015790

RefSeq (protein)

NP_001269979
NP_001269980
NP_001269981
NP_056074
NP_001352688

Contents

NP_056605

Location (UCSC) Chr 21: 44.22 – 44.24 Mb Chr 10: 77.91 – 77.92 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ICOS ligand is a protein that in humans is encoded by the ICOSLG gene [5] [6] [7] located at chromosome 21. ICOSLG has also been designated as CD275 (cluster of differentiation 275).

ICOSLG is glycosylated transmembrane structure, which is classified as a member of the B7 family due to the significant homology with B7 family members. The B7/CD28 superfamily provides both positive and negative co-signals to immunocytes in immune responses.

The interaction of ICOSLG with ICOS, the specific receptor for ICOSLG, is critically involved in the activation, proliferation, differentiation and cytokine production of T cells as well as in the antibody secretion from B cells during secondary immune responses. [8]

ICOSLG, which is extensively expressed in both non-lymphatic and lymphatic tissues, is an important molecule in upregulating and promoting T cell immune responses. Expression of ICOSLG in naive B cells and monocytes in PBMCs is at a low level. After stimulation by IFN-γ, TNF-α, or LPS, it can be quickly up-regulated. The induced expression of ICOS on activated T cells mainly regulates the secretion of Th2 cytokines and thus shifts the immune response to the Th2 type. It has been reported that the ICOS/ICOSLG pathway is involved in immunopathogenesis such as infection, hypersensitivity, autoimmune diseases, transplantation immunity and tumor immunity.

ICOSLG is also a major costimulator in endothelial cell-mediated T cell activation. It has an important physiological role of ICOSLG in the reactivation of effector/memory T cells on the endothelium controlling the entry of immune cells into inflamed tissue. [9]

Structure

Inducible costimulator-ligand (ICOS-L) is a member of the B7 family of costimulatory ligands [10] sharing 19–20% sequence identity with CD80 and CD86. Two splice variants of human ICOSLG have been described and designated hICOSLG and B7-H2/B7RP-1/hLICOS. [11]

Both molecules have an identical extracellular domain but differ at the carboxyl-terminal end of their cytoplasmic regions. In humans, cell surface expression of ICOSLG has been described on B cells, dendritic cells, monocytes/macrophages, and T cells. In addition, mRNA expression of ICOSLG has been detected in a variety of lymphoid and nonlymphoid organs, with hICOSLG showing a more lymphoid-restricted expression pattern (spleen, lymph node), whereas B7-H2/B7RP-1/hLICOSmRNA was expressed in all organs examined (e.g., spleen, kidney, heart, and brain). [12]

Interaction

Murine ICOSLG, unlike CD80 and CD86, does not interact with CD28 or CTLA-4 (CD152). Instead, ICOSLG binds to ICOS, a T cell-specific costimulatory molecule homologous to CD28 and CTLA-4. [13] In humans, ICOSLG binds to ICOS but also to CD28 and CTLA-4. [14]

The strong impact of ICOS/ICOSLG interaction on T cell-mediated immune responses in vivo became evident by the disruption of the ICOS gene in mice. ICOS deficient mice are characterized by impaired germinal center formation, have a profound defect in isotype class switching in T cell-dependent B cell responses, and are defective in IL-4 and IL-13 production. In addition, blockade of ICOS/ICOSLG interaction in animal models of experimental allergic encephalomyelitis and of cardiac allograft rejection revealed a critical role of ICOS and its ligand in inflammatory immune reactions. [9]

Immunodeficiencies

The research with mutant ICOSLG showed that if the protein was retained in ER/GA, instead of the cell surface in normal case, it diminished B cell costimulation of T cells. It led to defect in antibody and memory B cell generation. Mutant ICOSLG also impaired migration of lymphocytes and neutrophils across endothelial cells, which normally express ICOSLG. These defects contributed with altered adaptive immunity and neutropenia in patient, thus showing ICOSLG deficiency as a cause of combined immunodeficiency. [15]

Immunotherapy

The fluctuant balance between co-stimulatory and coinhibitory signals that a T cell receives participates in the initiation, effection, and termination of an immune response. Excessive activation and immune reaction of T cells may result in autoimmune diseases and host immune injury.

ICOSLG delivers a potent co-stimulatory signal to T cells when engaged by ICOS, resulting in T cell activation and proliferation. The existence of ICOS/ICOSLG signal in vivo is closely associated with many mouse autoimmune disease models. Conversely, the absence of ICOS/ICOSLG signal may be a good way to relieve autoimmune disease. In view of its critical function in regulating immunohomeostasis, ICOS signaling has aroused great attention in immunodiagnosis and therapy. [8]

The ICOS/ICOSLG axis has been shown to promote either antitumor T cell responses (when activated in Th1 and other Teff) or protumor responses when triggered in Tregs. Therefore, both agonistic and antagonistic monoclonal antibodies (mAbs) targeting this pathway are being investigated for cancer immunotherapy. [16] Stimulation of the ICOS pathway by tumor cell vaccine expressing ICOSLG, in combination with anti-CTLA-4 therapy blockade, led to enhanced antitumor efficacy. This combined treatment approach, which integrates ICOS costimulation through ICOSLG and CTLA-4 blockade, effectively alters tumor-associated macrophages (TAMs) towards a phenotype that fights against tumors, showing significant promise for cancer treatment. [17]

Undoubtedly, the development of more efficient and specific monoclonal antibodies may be important for further disclosure of ICOSLG function. Agonistic Abs are currently being administered either alone or in combination with immunotherapy and chemotherapy. [18]

References list

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000160223 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000000732 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ishikawa K, Nagase T, Suyama M, Miyajima N, Tanaka A, Kotani H, et al. (June 1998). "Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Research. 5 (3): 169–176. doi: 10.1093/dnares/5.3.169 . PMID   9734811.
  6. Yoshinaga SK, Zhang M, Pistillo J, Horan T, Khare SD, Miner K, et al. (October 2000). "Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS". International Immunology. 12 (10): 1439–1447. doi: 10.1093/intimm/12.10.1439 . PMID   11007762.
  7. "Entrez Gene: ICOSLG inducible T-cell co-stimulator ligand".
  8. 1 2 Shen S, Wang F, Chen L, Wang T, Hu Y, Zhang X (August 2011). "Immunoreactivity of two novel monoclonal antibodies against human inducible co-stimulator ligand". Hybridoma. 30 (4): 361–368. doi:10.1089/hyb.2011.0014. PMID   21851236.
  9. 1 2 Khayyamian S, Hutloff A, Büchner K, Gräfe M, Henn V, Kroczek RA, Mages HW (April 2002). "ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and Th2 cytokine secretion by memory CD4+ T cells". Proceedings of the National Academy of Sciences of the United States of America. 99 (9): 6198–6203. Bibcode:2002PNAS...99.6198K. doi: 10.1073/pnas.092576699 . PMC   122926 . PMID   11983910.
  10. Coyle AJ, Gutierrez-Ramos JC (March 2001). "The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function". Nature Immunology. 2 (3): 203–209. doi:10.1038/85251. PMID   11224518. S2CID   20542148.
  11. Wang S, Zhu G, Chapoval AI, Dong H, Tamada K, Ni J, Chen L (October 2000). "Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS". Blood. 96 (8): 2808–2813. doi:10.1182/blood.V96.8.2808. PMID   11023515.
  12. Ling V, Wu PW, Miyashiro JS, Marusic S, Finnerty HF, Collins M (June 2001). "Differential expression of inducible costimulator-ligand splice variants: lymphoid regulation of mouse GL50-B and human GL50 molecules". Journal of Immunology. 166 (12): 7300–7308. doi: 10.4049/jimmunol.166.12.7300 . PMID   11390480.
  13. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, et al. (December 1999). "T-cell co-stimulation through B7RP-1 and ICOS". Nature. 402 (6763): 827–832. Bibcode:1999Natur.402..827Y. doi:10.1038/45582. PMID   10617205. S2CID   4360410.
  14. Yao S, Zhu Y, Zhu G, Augustine M, Zheng L, Goode DJ, et al. (May 2011). "B7-h2 is a costimulatory ligand for CD28 in human". Immunity. 34 (5): 729–740. doi:10.1016/j.immuni.2011.03.014. PMC   3103603 . PMID   21530327.
  15. Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, et al. (December 2018). "Loss of human ICOSL results in combined immunodeficiency". The Journal of Experimental Medicine. 215 (12): 3151–3164. doi:10.1084/jem.20180668. PMC   6279397 . PMID   30498080.
  16. Amatore F, Gorvel L, Olive D (April 2018). "Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy". Expert Opinion on Therapeutic Targets. 22 (4): 343–351. doi:10.1080/14728222.2018.1444753. PMID   29468927. S2CID   4774208.
  17. Sharma N, Fan X, Atolagbe OT, Ge Z, Dao KN, Sharma P, Allison JP (April 2024). "ICOS costimulation in combination with CTLA-4 blockade remodels tumor-associated macrophages toward an antitumor phenotype". The Journal of Experimental Medicine. 221 (4). doi:10.1084/jem.20231263. PMC   10959121 . PMID   38517331.
  18. Solinas C, Gu-Trantien C, Willard-Gallo K (January 2020). "The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy". ESMO Open. 5 (1): e000544. doi:10.1136/esmoopen-2019-000544. PMC   7003380 . PMID   32516116.

Further reading

Related Research Articles

<span class="mw-page-title-main">Cytotoxic T-lymphocyte associated protein 4</span> Mammalian protein found in humans

Cytotoxic T-lymphocyte associated protein 4, (CTLA-4) also known as CD152, is a protein receptor that functions as an immune checkpoint and downregulates immune responses. CTLA-4 is constitutively expressed in regulatory T cells but only upregulated in conventional T cells after activation – a phenomenon which is particularly notable in cancers. It acts as an "off" switch when bound to CD80 or CD86 on the surface of antigen-presenting cells. It is encoded by the gene CTLA4 in humans.

Co-stimulation is a secondary signal which immune cells rely on to activate an immune response in the presence of an antigen-presenting cell. In the case of T cells, two stimuli are required to fully activate their immune response. During the activation of lymphocytes, co-stimulation is often crucial to the development of an effective immune response. Co-stimulation is required in addition to the antigen-specific signal from their antigen receptors.

<span class="mw-page-title-main">CD28</span> Mammalian protein found in humans

CD28 is one of the proteins expressed on T cells that provide co-stimulatory signals required for T cell activation and survival. T cell stimulation through CD28 in addition to the T-cell receptor (TCR) can provide a potent signal for the production of various interleukins.

<span class="mw-page-title-main">CD154</span> Protein-coding gene in humans

CD154, also called CD40 ligand or CD40L, is a protein that is primarily expressed on activated T cells and is a member of the TNF superfamily of molecules. It binds to CD40 on antigen-presenting cells (APC), which leads to many effects depending on the target cell type. In total CD40L has three binding partners: CD40, α5β1 integrin and integrin αIIbβ3. CD154 acts as a costimulatory molecule and is particularly important on a subset of T cells called T follicular helper cells. On TFH cells, CD154 promotes B cell maturation and function by engaging CD40 on the B cell surface and therefore facilitating cell-cell communication. A defect in this gene results in an inability to undergo immunoglobulin class switching and is associated with hyper IgM syndrome. Absence of CD154 also stops the formation of germinal centers and therefore prohibiting antibody affinity maturation, an important process in the adaptive immune system.

<span class="mw-page-title-main">CD278</span> Protein-coding gene in the species Homo sapiens

Inducible T-cell costimulator is an immune checkpoint protein that in humans is encoded by the ICOS gene. The protein belongs to the CD28 and CTLA-4 cell-surface receptor family. These are proteins expressed on the surface of immune cells that mediate signalling between them. A surface protein, the ligand, binds specifically to its receptor on another cell, leading to a signalling cascade in that cell.

<span class="mw-page-title-main">CD80</span> Mammalian protein found in Homo sapiens

The Cluster of differentiation 80 is a B7, type I membrane protein in the immunoglobulin superfamily, with an extracellular immunoglobulin constant-like domain and a variable-like domain required for receptor binding. It is closely related to CD86, another B7 protein (B7-2), and often works in tandem. Both CD80 and CD86 interact with costimulatory receptors CD28, CTLA-4 (CD152) and the p75 neurotrophin receptor.

<span class="mw-page-title-main">CD86</span> Mammalian protein found in Homo sapiens

Cluster of Differentiation 86 is a protein constitutively expressed on dendritic cells, Langerhans cells, macrophages, B-cells, and on other antigen-presenting cells. Along with CD80, CD86 provides costimulatory signals necessary for T cell activation and survival. Depending on the ligand bound, CD86 can signal for self-regulation and cell-cell association, or for attenuation of regulation and cell-cell disassociation.

<span class="mw-page-title-main">CD134</span> Protein-coding gene in humans

Tumor necrosis factor receptor superfamily, member 4 (TNFRSF4), also known as CD134 and OX40 receptor, is a member of the TNFR-superfamily of receptors which is not constitutively expressed on resting naïve T cells, unlike CD28. OX40 is a secondary co-stimulatory immune checkpoint molecule, expressed after 24 to 72 hours following activation; its ligand, OX40L, is also not expressed on resting antigen presenting cells, but is following their activation. Expression of OX40 is dependent on full activation of the T cell; without CD28, expression of OX40 is delayed and of fourfold lower levels.

OX40L is the ligand for OX40 and is stably expressed on many antigen-presenting cells such as DC2s, macrophages, and activated B lymphocytes.

<span class="mw-page-title-main">C-C chemokine receptor type 7</span> Protein-coding gene in the species Homo sapiens

C-C chemokine receptor type 7 is a protein that in humans is encoded by the CCR7 gene. Two ligands have been identified for this receptor: the chemokines ligand 19 (CCL19/ELC) and ligand 21 (CCL21). The ligands have similar affinity for the receptor, though CCL19 has been shown to induce internalisation of CCR7 and desensitisation of the cell to CCL19/CCL21 signals. CCR7 is a transmembrane protein with 7 transmembrane domains, which is coupled with heterotrimeric G proteins, which transduce the signal downstream through various signalling cascades. The main function of the receptor is to guide immune cells to immune organs by detecting specific chemokines, which these tissues secrete.

<span class="mw-page-title-main">PD-L1</span> Mammalian protein found in humans

Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a protein that in humans is encoded by the CD274 gene.

<span class="mw-page-title-main">VTCN1</span> Protein-coding gene in the species Homo sapiens

V-set domain-containing T-cell activation inhibitor 1 is a protein that in humans is encoded by the VTCN1 gene.

<span class="mw-page-title-main">PDCD1LG2</span> Protein-coding gene in the species Homo sapiens

Programmed cell death 1 ligand 2 is a protein that in humans is encoded by the PDCD1LG2 gene. PDCD1LG2 has also been designated as CD273. PDCD1LG2 is an immune checkpoint receptor ligand which plays a role in negative regulation of the adaptive immune response. PD-L2 is one of two known ligands for Programmed cell death protein 1 (PD-1).

<span class="mw-page-title-main">CD276</span> Protein-coding gene in the species Homo sapiens

Cluster of Differentiation 276 (CD276) or B7 Homolog 3 (B7-H3) is a human protein encoded by the CD276 gene.

<span class="mw-page-title-main">BTLA</span> Protein-coding gene in the species Homo sapiens

B- and T-lymphocyte attenuator or BTLA is a protein that belongs to the CD28 immunoglobulin superfamily (IgSF) which is encoded by the BTLA gene located on the 3rd human chromosome. BTLA was first discovered in 2003 as an inhibitor of Th1 expansion and it became the 3rd member of the CD28 IgSF. However, its discovered ligand herpes virus entry mediator or HVEM belongs to the tumor necrosis factor receptor superfamily (TNFRSF). This finding was surprising because until the discovery of HVEM it was believed that receptors and ligands always belong to the same family.

<span class="mw-page-title-main">TNFRSF18</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced TNFR-related protein (GITR) or CD357. GITR is encoded and tnfrsf18 gene at chromosome 4 in mice. GITR is type I transmembrane protein and is described in 4 different isoforms. GITR human orthologue, also called activation-inducible TNFR family receptor (AITR), is encoded by the TNFRSF18 gene at chromosome 1.

<span class="mw-page-title-main">Follicular B helper T cells</span>

Follicular helper T cells (also known as T follicular helper cells and abbreviated as TFH), are antigen-experienced CD4+ T cells found in the periphery within B cell follicles of secondary lymphoid organs such as lymph nodes, spleen and Peyer's patches, and are identified by their constitutive expression of the B cell follicle homing receptor CXCR5. Upon cellular interaction and cross-signaling with their cognate follicular (Fo B) B cells, TFH cells trigger the formation and maintenance of germinal centers through the expression of CD40 ligand (CD40L) and the secretion of IL-21 and IL-4. TFH cells also migrate from T cell zones into these seeded germinal centers, predominantly composed of rapidly dividing B cells mutating their Ig genes. Within germinal centers, TFH cells play a critical role in mediating the selection and survival of B cells that go on to differentiate either into long-lived plasma cells capable of producing high affinity antibodies against foreign antigen, or germinal center-dependent memory B cells capable of quick immune re-activation in the future if ever the same antigen is re-encountered. TFH cells are also thought to facilitate negative selection of potentially autoimmune-causing mutated B cells in the germinal center. However, the biomechanisms by which TFH cells mediate germinal center tolerance are yet to be fully understood.

<span class="mw-page-title-main">NKG2D</span> Protein-coding gene in the species Homo sapiens

NKG2D is an activating receptor (transmembrane protein) belonging to the NKG2 family of C-type lectin-like receptors. NKG2D is encoded by KLRK1 (killer cell lectin like receptor K1) gene which is located in the NK-gene complex (NKC) situated on chromosome 6 in mice and chromosome 12 in humans. In mice, it is expressed by NK cells, NK1.1+ T cells, γδ T cells, activated CD8+ αβ T cells and activated macrophages. In humans, it is expressed by NK cells, γδ T cells and CD8+ αβ T cells. NKG2D recognizes induced-self proteins from MIC and RAET1/ULBP families which appear on the surface of stressed, malignant transformed, and infected cells.

<span class="mw-page-title-main">Immune checkpoint</span> Regulators of the immune system

Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. However, some cancers can protect themselves from attack by stimulating immune checkpoint targets.

<span class="mw-page-title-main">CD28 family receptor</span> Group of regulatory cell surface receptors

CD28 family receptors are a group of regulatory cell surface receptors expressed on immune cells. The CD28 family in turn is a subgroup of the immunoglobulin superfamily.