Discoidin domain-containing receptor 2

Last updated
DDR2
Protein DDR2 PDB 2WUH.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DDR2 , MIG20a, NTRKR3, TKT, TYRO10, discoidin domain receptor tyrosine kinase 2, WRCN
External IDs OMIM: 191311 MGI: 1345277 HomoloGene: 68505 GeneCards: DDR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001014796
NM_006182
NM_001354982
NM_001354983

NM_022563

RefSeq (protein)

NP_001014796
NP_006173
NP_001341911
NP_001341912

NP_072075

Location (UCSC) Chr 1: 162.63 – 162.79 Mb Chr 1: 169.8 – 169.94 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Discoidin domain-containing receptor 2, also known as CD167b (cluster of differentiation 167b), is a protein that in humans is encoded by the DDR2 gene. [5] Discoidin domain-containing receptor 2 is a receptor tyrosine kinase (RTK).

Contents

Function

RTKs play a key role in the communication of cells with their microenvironment. These molecules are involved in the regulation of cell growth, differentiation, and metabolism. In several cases the biochemical mechanism by which RTKs transduce signals across the membrane has been shown to be ligand induced receptor oligomerization and subsequent intracellular phosphorylation. In the case of DDR2, the ligand is collagen which binds to its extracellular discoidin domain. [6] This autophosphorylation leads to phosphorylation of cytosolic targets as well as association with other molecules, which are involved in pleiotropic effects of signal transduction. DDR2 has been associated with a number of diseases including fibrosis and cancer. [7]

Structure

RTKs have a tripartite structure with extracellular, transmembrane, and cytoplasmic regions. This gene encodes a member of a novel subclass of RTKs and contains a distinct extracellular region encompassing a factor VIII-like domain. [5]

Gene

Alternative splicing in the 5' UTR of the DDR2 gene results in multiple transcript variants encoding the same protein. [5]

Interactions

DDR2 (gene) has been shown to interact with SHC1 [8] and phosphorylate Shp2. [9] DDR2 also interacts with Integrin α1β1 and α2β1 by promoting their adhesion to collagen. [10]

Related Research Articles

<span class="mw-page-title-main">Receptor tyrosine kinase</span> Class of enzymes

Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode receptor tyrosine kinase proteins. Receptor tyrosine kinases have been shown not only to be key regulators of normal cellular processes but also to have a critical role in the development and progression of many types of cancer. Mutations in receptor tyrosine kinases lead to activation of a series of signalling cascades which have numerous effects on protein expression. Receptor tyrosine kinases are part of the larger family of protein tyrosine kinases, encompassing the receptor tyrosine kinase proteins which contain a transmembrane domain, as well as the non-receptor tyrosine kinases which do not possess transmembrane domains.

<span class="mw-page-title-main">PTPN11</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11 gene. PTPN11 is a protein tyrosine phosphatase (PTP) Shp2.

<span class="mw-page-title-main">Glycoprotein 130</span> Mammalian protein found in Homo sapiens

Glycoprotein 130 is a transmembrane protein which is the founding member of the class of all cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement. As with other type I cytokine receptors, gp130 possesses a WSXWS amino acid motif that ensures correct protein folding and ligand binding. It interacts with Janus kinases to elicit an intracellular signal following receptor interaction with its ligand. Structurally, gp130 is composed of five fibronectin type-III domains and one immunoglobulin-like C2-type (immunoglobulin-like) domain in its extracellular portion.

<span class="mw-page-title-main">SOS1</span> Protein-coding gene in the species Homo sapiens

Son of sevenless homolog 1 is a protein that in humans is encoded by the SOS1 gene.

<span class="mw-page-title-main">PTPN6</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 6, also known as Src homology region 2 domain-containing phosphatase-1 (SHP-1), is an enzyme that in humans is encoded by the PTPN6 gene.

<span class="mw-page-title-main">Fibroblast growth factor receptor 4</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 4 is a protein that in humans is encoded by the FGFR4 gene. FGFR4 has also been designated as CD334.

<span class="mw-page-title-main">DOK1</span> Protein-coding gene in the species Homo sapiens

Docking protein 1 is a protein that in humans is encoded by the DOK1 gene.

<span class="mw-page-title-main">FRS2</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor substrate 2 is a protein that in humans is encoded by the FRS2 gene.

<span class="mw-page-title-main">INPPL1</span> Protein-coding gene in the species Homo sapiens

SH2-domain containing Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2 is an enzyme that in humans is encoded by the INPPL1 gene.

<span class="mw-page-title-main">EPH receptor A2</span> Protein-coding gene in humans

EPH receptor A2 is a protein that in humans is encoded by the EPHA2 gene.

<span class="mw-page-title-main">PLCG2</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 is an enzyme that in humans is encoded by the PLCG2 gene.

<span class="mw-page-title-main">PTPN12</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 12 is an enzyme that in humans is encoded by the PTPN12 gene.

<span class="mw-page-title-main">DDR1</span> Protein-coding gene in the species Homo sapiens

Discoidin domain receptor family, member 1, also known as DDR1 or CD167a, is a human gene.

<span class="mw-page-title-main">ABL2</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase ABL2 also known as Abelson-related gene (Arg) is an enzyme that in humans is encoded by the ABL2 gene.

<span class="mw-page-title-main">EPH receptor B1</span> Protein-coding gene in the species Homo sapiens

Ephrin type-B receptor 1 is a protein that in humans is encoded by the EPHB1 gene.

<span class="mw-page-title-main">Megakaryocyte-associated tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Megakaryocyte-associated tyrosine-protein kinase is an enzyme that in humans is encoded by the MATK gene.

<span class="mw-page-title-main">SH2B2</span> Protein-coding gene in the species Homo sapiens

SH2B adapter protein 2 is a protein that in humans is encoded by the SH2B2 gene.

<span class="mw-page-title-main">Leukocyte receptor tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Leukocyte receptor tyrosine kinase is an enzyme that in humans is encoded by the LTK gene.

A non-receptor tyrosine kinase (nRTK) is a cytosolic enzyme that is responsible for catalysing the transfer of a phosphate group from a nucleoside triphosphate donor, such as ATP, to tyrosine residues in proteins. Non-receptor tyrosine kinases are a subgroup of protein family tyrosine kinases, enzymes that can transfer the phosphate group from ATP to a tyrosine residue of a protein (phosphorylation). These enzymes regulate many cellular functions by switching on or switching off other enzymes in a cell.

Collagen receptors are membrane proteins that bind the extracellular matrix protein collagen, the most abundant protein in mammals. They control mainly cell proliferation, migration and adhesion, coagulation cascade activation and they affect ECM structure by regulation of MMP.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000162733 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026674 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: DDR2 discoidin domain receptor family, member 2".
  6. Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C, Kumarasiri M, Mahasenan KV, Mobashery S, Huang P, Agarwal G, Fridman R (March 2013). "Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling". J. Biol. Chem. 288 (11): 7430–7. doi: 10.1074/jbc.R112.444158 . PMC   3597784 . PMID   23335507.
  7. Leitinger B (May 2011). "Transmembrane collagen receptors". Annu. Rev. Cell Dev. Biol. 27: 265–90. doi:10.1146/annurev-cellbio-092910-154013. PMID   21568710.
  8. Ikeda K, Wang LH, Torres R, Zhao H, Olaso E, Eng FJ, Labrador P, Klein R, Lovett D, Yancopoulos GD, Friedman SL, Lin HC (May 2002). "Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen". J. Biol. Chem. 277 (21): 19206–12. doi: 10.1074/jbc.M201078200 . PMID   11884411.
  9. Iwai LK, Payne LS, Luczynski MT, Chang F, Xu H, Clinton RW, Paul A, Esposito EA, Gridley S, Leitinger B, Naegle KM, Huang PH (July 2013). "Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants". Biochem. J. 454 (3): 501–13. doi:10.1042/BJ20121750. PMC   3893797 . PMID   23822953.
  10. Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B (Dec 2012). "Discoidin domain receptors promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation". PLOS ONE. 7 (12): e52209. Bibcode:2012PLoSO...752209X. doi: 10.1371/journal.pone.0052209 . PMC   3527415 . PMID   23284937.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.