Tyrosine-protein kinase receptor UFO is a protein that in human is encoded by the AXL gene. [5] [6] The gene was initially designated as UFO, in allusion to the unidentified function of this protein. [7] However, in the years since its discovery, research into AXL's expression profile and mechanism has made it an increasingly attractive target, especially for cancer therapeutics. In recent years, AXL has emerged as a key facilitator of immune escape and drug-resistance by cancer cells, leading to aggressive and metastatic cancers. [8]
AXL is a cell surface receptor tyrosine kinase, part of the TAM family of kinases including TYRO3 and MERTK. [9]
The Axl gene is evolutionarily conserved between vertebrate species. This gene has two different alternatively spliced transcript variants. [6]
The protein encoded by this gene is a member of the receptor tyrosine kinase subfamily. Although it is similar to other receptor tyrosine kinases, the Axl protein represents a unique structure of the extracellular region that juxtaposes IgL and FNIII repeats. [6]
The AXL protein is characterized by an extracellular structure consisting of two fibronectin type 3-like repeats and two immunoglobulin-like repeats along with its intracellular tyrosine kinase domain.
AXL is in close vicinity to the BCL3 oncogene, which is at 19q13.1-q13.2. [6]
The AXL receptor transduces signals from the extracellular matrix into the cytoplasm by binding growth factors like vitamin K-dependant protein growth-arrest-specific gene 6 (GAS6). It is involved in the stimulation of cell proliferation, migration, differentiation and survival. Activation of Axl leads to autophosphorylation of its intracellular domain. Proteolytic cleavage of the AXL extracellular domain by the metalloproteinases ADAM10 and ADAM17 can downregulate this signalling activity. [10]
Signalling pathways activated downstream of AXL include PI3K-AKT-mTOR, MEKERK, NF-κB, and JAK/STAT. [11]
This receptor can also mediate cell aggregation by homophilic binding. [6]
AXL protein is expressed in normal tissues, particularly in bone marrow stroma and myeloid cells, and in tumour cells and tumour vasculature. [12] [13] In cancer, AXL is expressed on the tumor cells as well as adjacent immune cells including dendritic cells, macrophages, and NK cells.
Axl is an inhibitor of the innate immune response. The function of activated AXL in normal tissues includes the efficient clearance of apoptotic material and the dampening of TLR-dependent inflammatory responses and natural killer cell activity. [14]
AXL is a putative driver of diverse cellular processes that are critical for the development, growth, and spread of tumours, including proliferation, invasiveness and migration, epithelial-to-mesenchymal transition, stemness, angiogenesis, and immune modulation. [11] AXL has been implicated as a cancer driver and correlated with poor survival in numerous aggressive tumors including triple-negative breast cancer (TNBC), acute myeloid leukemia (AML), non-small-cell lung cancer (NSCLC), pancreatic cancer and ovarian cancer, among others. [15]
Axl was first isolated in 1988 and identified as an oncogene in a screen for transforming genes in patients with a chronic myelogenous leukemia- that progressed to 'blast crisis'. [16] Since then, increased AXL expression has been associated with numerous cancers including lung cancer, breast cancer, pancreatic cancer, ovarian cancer, colon cancer and melanoma among others, and shown to have a strong correlation with poor survival outcomes. [13]
AXL has been shown to be a key driver of drug-resistance to targeted therapies, immuno therapies and chemotherapy in various animal models. Based on current knowledge of AXL's role in therapy resistance, future studies will help to determine whether AXL has a translational application as a biomarker for predicting therapeutic response to established drugs.
Recently, AXL has been implicated in chronic fibrotic diseases in several organs, including the liver. [17]
AXL also play an important role in Zika virus and SARS-CoV-2 infection, allowing for entry of the virus into host cells. [18] [19] This phenomenon is known to rely on phosphatidylserine incorporated in the viral envelope during egress, which then binds to AXL via the adapter GAS6. AXL mediates internalization into the endosome from which these viruses escape and initiate replication.
Studies have shown that AXL knockdown leads to downregulation of transcription factors required for EMT, including Slug, Twist, and Zeb1, and to increased expression of E-cadherin. [20]
Several drugs classified as "AXL inhibitors" have entered clinical trials; however, many target multiple kinase receptors in addition to AXL. The most advanced AXL selective inhibitor is bemcentinib (BGB324 or R428), an oral small molecule currently in multiple Phase II clinical trials for NSCLC, TNBC, AML and melanoma. Bemcentinib is being pursued as monotherapy and as combination therapy with existing and emerging targeted therapies, immunotherapies and chemotherapy.
A monoclonal antibody targeting AXL (YW327.6S2) and an AXL decoy receptor (GL2I.T) are currently in preclinical development. Additionally, an oral AXL inhibitor (TP-0903) is expected to enter Phase 1 clinical trial in November 2016 (in advanced solid tumours: NCT02729298).
Astellas Pharma is currently testing gilteritinib (ASP2215), a dual FLT3-AXL tyrosine kinase inhibitor in acute myeloid leukemia (AML). In 2017, gilteritinib gained FDA orphan drug status for AML. [21]
These approved drugs and ongoing and pending clinical trials highlight the potentially wide-ranging safety and efficacy of AXL inhibition. [11]
AXL receptor tyrosine kinase has been shown to interact with TENC1. [22] Also, it interacts with CBL, GRB2, LCK, NCK2, PIK3R1, PIK3R2, PIK3R3, PLCG1, SOCS1, and TNS2. [23]
An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.
The Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells. This chromosome is defective and unusually short because of reciprocal translocation, t(9;22)(q34;q11), of genetic material between chromosome 9 and chromosome 22, and contains a fusion gene called BCR-ABL1. This gene is the ABL1 gene of chromosome 9 juxtaposed onto the breakpoint cluster region BCR gene of chromosome 22, coding for a hybrid protein: a tyrosine kinase signaling protein that is "always on", causing the cell to divide uncontrollably by interrupting the stability of the genome and impairing various signaling pathways governing the cell cycle.
Receptor tyrosine-protein kinase erbB-2 is a protein that normally resides in the membranes of cells and is encoded by the ERBB2 gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The human protein is also frequently referred to as HER2 or CD340.
Proto-oncogene c-KIT is the gene encoding the receptor tyrosine kinase protein known as tyrosine-protein kinase KIT, CD117 or mast/stem cell growth factor receptor (SCFR). Multiple transcript variants encoding different isoforms have been found for this gene. KIT was first described by the German biochemist Axel Ullrich in 1987 as the cellular homolog of the feline sarcoma viral oncogene v-kit.
Signal transducer and activator of transcription 5 (STAT5) refers to two highly related proteins, STAT5A and STAT5B, which are part of the seven-membered STAT family of proteins. Though STAT5A and STAT5B are encoded by separate genes, the proteins are 90% identical at the amino acid level. STAT5 proteins are involved in cytosolic signalling and in mediating the expression of specific genes. Aberrant STAT5 activity has been shown to be closely connected to a wide range of human cancers, and silencing this aberrant activity is an area of active research in medicinal chemistry.
Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).
Cluster of differentiation antigen 135 (CD135) also known as fms like tyrosine kinase 3, receptor-type tyrosine-protein kinase FLT3, or fetal liver kinase-2 (Flk2) is a protein that in humans is encoded by the FLT3 gene. FLT3 is a cytokine receptor which belongs to the receptor tyrosine kinase class III. CD135 is the receptor for the cytokine Flt3 ligand (FLT3L).
Fibroblast growth factor receptor 1 (FGFR-1), also known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2 / Pfeiffer syndrome, and CD331, is a receptor tyrosine kinase whose ligands are specific members of the fibroblast growth factor family. FGFR-1 has been shown to be associated with Pfeiffer syndrome, and clonal eosinophilias.
ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.
Growth arrest – specific 6, also known as GAS6, is a human gene coding for the GAS6 protein. It is similar to the Protein S with the same domain organization and 43% amino acid identity. It was originally found as a gene upregulated by growth arrested fibroblasts.
Proto-oncogene tyrosine-protein kinase Src, also known as proto-oncogene c-Src, or simply c-Src, is a non-receptor tyrosine kinase protein that in humans is encoded by the SRC gene. It belongs to a family of Src family kinases and is similar to the v-Src gene of Rous sarcoma virus. It includes an SH2 domain, an SH3 domain and a tyrosine kinase domain. Two transcript variants encoding the same protein have been found for this gene.
Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.
Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme that in humans is encoded by the PIM1 gene.
Proto-oncogene tyrosine-protein kinase MER is an enzyme that in humans is encoded by the MERTK gene.
Tyrosine-protein kinase receptor TYRO3 is an enzyme that in humans is encoded by the TYRO3 gene.
Platelet-derived growth factor receptor A, also termed CD140a, is a receptor located on the surface of a wide range of cell types. The protein is encoded in the human by the PDGFRA gene. This receptor binds to certain isoforms of platelet-derived growth factors (PDGFs) and thereby becomes active in stimulating cell signaling pathways that elicit responses such as cellular growth and differentiation. The receptor is critical for the embryonic development of certain tissues and organs, and for their maintenance, particularly hematologic tissues, throughout life. Mutations in PDGFRA, are associated with an array of clinically significant neoplasms, notably ones of the clonal hypereosinophilia class of malignancies, as well as gastrointestinal stromal tumors (GISTs).
Tyrosine-protein kinase transmembrane receptor ROR1, also known as neurotrophic tyrosine kinase, receptor-related 1 (NTRKR1), is an enzyme that in humans is encoded by the ROR1 gene. ROR1 is a member of the receptor tyrosine kinase-like orphan receptor (ROR) family.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies. In some cases, cancers can evolve resistance to multiple drugs, called multiple drug resistance.
Clonal hypereosinophilia, also termed primary hypereosinophilia or clonal eosinophilia, is a grouping of hematological disorders all of which are characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell that occupies the bone marrow, blood, and other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.