Janus kinase 3

Last updated
JAK3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases JAK3 , JAK-3, JAK3_HUMAN, JAKL, L-JAK, LJAK, Janus kinase 3
External IDs OMIM: 600173 MGI: 99928 HomoloGene: 181 GeneCards: JAK3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000215

NM_001190830
NM_010589

RefSeq (protein)

NP_000206

NP_001177759
NP_034719

Location (UCSC) Chr 19: 17.82 – 17.85 Mb Chr 8: 72.13 – 72.14 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Tyrosine-protein kinase JAK3 is a tyrosine kinase enzyme that in humans is encoded by the JAK3 gene. [5] [6]

Janus kinases

Janus kinase 3 is a tyrosine kinase that belongs to the janus family of kinases. Other members of the Janus family include JAK1, JAK2 and TYK2. Janus kinases (JAKs) are relatively large kinases of approximately 1150 amino acids with apparent molecular weights of 120-130 kDa. [7] They are cytosolic tyrosine kinases that are specifically associated with cytokine receptors. Since cytokine receptor proteins lack enzymatic activity, they are dependent upon JAKs to initiate signaling upon binding of their ligands (e.g. cytokines). The cytokine receptors can be divided into five major subgroups based on their different domains and activation motifs. JAK3 is required for signaling of the type I receptors that use the common gamma chain (γc).Studies suggest Jak3 plays essential roles in immune and nonimmune cell physiology. Epithelial Jak3 is important for the regulation of epithelial-mesenchymal transition, cell survival, cell growth, development, and differentiation. Growth factors and cytokines produced by the cells of hematopoietic origin use Jak kinases for signal transduction in both immune and nonimmune cells. Among Jaks, Jak3 is widely expressed in both immune cells and in intestinal epithelial cells (IECs) of both humans and mice. Mutations that abrogate Jak3 functions cause an autosomal severe combined immunodeficiency disease (SCID) while activating Jak3 mutations lead to the development of hematologic and epithelial cancers. A selective Jak3 inhibitor tofacitinib (Xeljanz) approved by the FDA for certain chronic inflammatory conditions demonstrates immunosuppressive activity in rheumatoid arthritis, psoriasis, and organ transplant rejection. However, Jak3-directed drugs also inflict adverse effects due to its essential role in mucosal epithelial functions. Structural implications of Jak3 domains beyond the immune cells are also explained. As information about the roles of Jak3 in gastrointestinal functions and associated diseases are only just emerging, its implications in gastrointestinal wound repair, inflammatory bowel disease, obesity-associated metabolic syndrome, and epithelial cancers are being deciphered in the literature. [8]

Some cytokine receptors and their involvement with JAK kinases [9]
TypeSubgroupCytokine ReceptorJAK Kinase
Ihomodimeric EPO, TPO, GH, G-CSF JAK2
uses common beta chain (CSF2RΒ) IL-3, IL-5, GM-CSF JAK2
uses gp130 chain IL-6, IL-11 JAK1, JAK2, Tyk2
uses common gamma chain (γc) IL-2, IL-4, IL-7, IL-9, IL-15, IL-21 JAK1, JAK3
II IFN-α, IFN-β, IFN-γ JAK1, JAK2, Tyk2

Function

As JAK3 is expressed in hematopoietic and epithelial cells, its role in cytokine signaling is thought to be more restricted than other JAKs. It is most commonly expressed in T cells and NK cells, [7] but has also been found in intestinal epithelial cells. [10] [11] [12] JAK3 is involved in signal transduction by receptors that employ the common gamma chain (γc) of the type I cytokine receptor family (e.g. IL-2R, IL-4R, IL-7R, IL-9R, IL-15R, and IL-21R). [13] Mutations that abrogate Janus kinase 3 function cause an autosomal SCID (severe combined immunodeficiency disease), [14] while activating Janus kinase 3 mutations lead to the development of leukemia. [15]

In addition to its well-known roles in T cells and NK cells, JAK3 has been found to mediate IL-8 stimulation in human neutrophils. IL-8 primarily functions to induce chemotaxis in neutrophils and lymphocytes, and JAK3 silencing severely inhibits IL-8-mediated chemotaxis. [16]

Intestinal epithelial cells

Jak3 interacts with actin-binding protein villin, thereby facilitating cytoskeletal remodeling and mucosal wound repair. [12] Structural determinants that regulate the interactions between Jak3 and cytoskeletal proteins of the villin / gelsolin family have also been characterized. Functional reconstitution of kinase activity by recombinant Jak3 using Jak3-wt or villin/gelsolin-wt as substrate showed that Jak3 autophosphorylation was the rate-limiting step during interactions between Jak3 and cytoskeletal proteins. Kinetic parameters showed that phosphorylated (P) Jak3 binds to P-villin with a dissociation constant (Kd) of 23 nM and a Hill's coefficient of 3.7. Pairwise binding between Jak3 mutants and villin showed that the FERM domain of Jak3 was sufficient for binding to P-villin with a Kd of 40.0 nM. However, the SH2 domain of Jak3 prevented P-villin from binding to the FERM domain of nonphosphorylated protein. The intramolecular interaction between the FERM and SH2 domains of nonphosphorylated Jak3 prevented Jak3 from binding to villin and tyrosine autophosphorylation of Jak3 at the SH2 domain decreased these intramolecular interactions and facilitated binding of the FERM domain to villin. These demonstrate the molecular mechanism of interactions between Jak3 and cytoskeletal proteins where tyrosine phosphorylation of the SH2 domain acted as an intramolecular switch for the interactions between Jak3 and cytoskeletal proteins. [10]

Sustained damage to the mucosal lining in patients with inflammatory bowel disease (IBD) facilitates translocation of intestinal microbes to submucosal immune cells leading to chronic inflammation. IL-2 plays a role in intestinal epithelial cell (IEC) homeostasis through concentration-dependent regulation of IEC proliferation and cell death. Activation by IL-2 led to tyrosine phosphorylation-dependent interactions between Jak3 and p52ShcA only at lower concentrations. Higher concentrations of IL-2 decreased the phosphorylation of Jak3, disrupted its interactions with p52ShcA, redistributed Jak3 to the nucleus, and induced apoptosis in IEC. IL-2 also induced dose-dependent downregulation of jak3-mRNA. Constitutive overexpression and mir-shRNA-mediated knockdown studies showed that expression of Jak3 was necessary for IL-2-induced proliferation of IEC. Additionally, IL-2-induced downregulation of jak3-mRNA was responsible for higher IL-2-induced apoptosis in IEC. Thus IL-2-induced mucosal homeostasis through posttranslational and transcriptional regulation of Jak3. [11]

Jak3 is also implicated in mucosal differentiation and predisposition to inflammatory bowel disease in mice model. These studies show that Jak3 is expressed in colonic mucosa of mice, and the loss of mucosal expression of Jak3 results in reduced expression of differentiation markers for the cells of both enterocytic and secretory lineages. Jak3 KO mice showed reduced expression of colonic villin, carbonic anhydrase, secretory mucin muc2, and increased basal colonic inflammation reflected by increased levels of pro-inflammatory cytokines IL-6 and IL-17A in colon along with increased colonic myeloperoxidase activity. The inflammations in KO mice were associated with shortening of colon length, reduced cecum length, decreased crypt heights, and increased severity toward dextran sulfate sodium-induced colitis. In differentiated human colonic epithelial cells, Jak3 redistributed to basolateral surfaces and interacted with adherens junction (AJ) protein β-catenin. Jak3 expression in these cells was essential for AJ localization of β-catenin and maintenance of epithelial barrier functions. Collectively, these results demonstrate the essential role of Jak3 in the colon where it facilitated mucosal differentiation by promoting the expression of differentiation markers and enhanced colonic barrier functions through AJ localization of β-catenin. [17]

Though constitutive activation of Janus kinase 3 (Jak3) leads to different cancers, the mechanism of trans-molecular regulation of Jak3 activation is only recently reported. This study showed that Jak3 auto-phosphorylation was the rate limiting step during Jak3 trans-phosphorylation of Shc where Jak3 directly phosphorylated (P) two tyrosine residues in SH-2-domain, and one tyrosine residue each in CH-1, and PID domains of Shc. Direct interactions between mutants of Jak3 and Shc showed that while FERM domain of Jak3 was sufficient for binding to Shc, CH-1 and PID domains of Shc were responsible for binding to Jak3. Functionally, Jak3 was auto-phosphorylated under IL-2 stimulation in epithelial cells. However, Shc recruited tyrosine phosphatase SHP-2 and PTP-1B to Jak3 and thereby dephosphorylate Jak3. Thus the study not only characterized Jak3 interaction with Shc, but also demonstrated the mechanism of intracellular regulation of Jak3 activation where Jak3 interactions with Shc acted as a regulator of Jak3 dephosphorylation through direct interactions of Shc with both Jak3 and tyrosine phosphatases. [18]

Chronic low-grade inflammation (CLGI) plays a key role in metabolic deterioration in the obese population. Jak3 expression and activation provide protection against development of CLGI and associated health complications. Studies in rodent model show that loss of Jak3 results in increased body weight, basal systemic CLGI, compromised glycemic homeostasis, hyperinsulinemia, and early symptoms of liver steatosis. Lack of Jak3 also results in exaggerated symptoms of metabolic syndrome by western high-fat diet. Mechanistically, it is shown that Jak3 is essential for reduced expression and activation of toll like receptors (TLRs) in murine intestinal mucosa and human intestinal epithelial cells where Jak3 interacted with and activated p85, the regulatory sub-unit of the PI3K, through tyrosine phosphorylation of adapter protein insulin receptor substrate (IRS1). These interactions resulted in activation of PI3K-Akt axis, which was essential for reduced TLR expression and TLR associated NF-κB activation. Overall, Jak3 plays an essential role in promoting mucosal tolerance through suppressed expression and limiting activation of TLRs thereby preventing intestinal and systemic CLGI and associated obesity and MetS. [19]

Compromise in adherens junctions (AJs) is associated with several chronic inflammatory diseases. Functional characterization showed that Jak3 autophosphorylation was the rate-limiting step during Jak3 trans-phosphorylation of β-catenin, where Jak3 directly phosphorylated three tyrosine residues, viz. Tyr30, Tyr64, and Tyr86 in the N-terminal domain (NTD) of β-catenin. However, prior phosphorylation of β-catenin at Tyr654 was essential for further phosphorylation of β-catenin by Jak3. Interaction studies indicated that phosphorylated Jak3 bound to phosphorylated β-catenin with a dissociation constant of 0.28 μm, and although both the kinase and FERM (Band 4.1, ezrin, radixin, and moesin) domains of Jak3 interacted with β-catenin, the NTD domain of β-catenin facilitated its interactions with Jak3. Physiologically, Jak3-mediated phosphorylation of β-catenin suppressed EGF-mediated epithelial–mesenchymal transition (EMT)and facilitated epithelial barrier functions by AJ localization of phosphorylated β-catenin through its interactions with α-catenin. Moreover, loss of Jak3-mediated phosphorylation sites in β-catenin abrogated its AJ localization and compromised epithelial barrier functions. Together, this study not only characterized Jak3 interaction with β-catenin but also demonstrated the mechanism of molecular interplay between AJ dynamics and EMT by Jak3-mediated NTD phosphorylation of β-catenin. [20]

Breast cancer resistance protein (BCRP) is a member of ATP-binding cassette (ABC) transporter proteins whose primary function is to efflux substrates bound to the plasma membrane. Impaired intestinal barrier functions play a major role in chronic low-grade inflammation (CLGI)-associated obesity, but the regulation of BCRP during obesity and its role in maintaining the intestinal barrier function during CLGI-associated obesity were unknown. Using several approaches, including efflux assays, immunoprecipitation/-blotting/-histochemistry, paracellular permeability assay, fluorescence activated cell sorting, cytokine assay, and immunofluorescence microscopy, recent studies suggest that obese individuals have compromised intestinal BCRP functions and that diet-induced obese mice recapitulate these outcomes. It was also demonstrated that the compromised BCRP functions during obesity were due to loss of Janus kinase 3 (JAK3)-mediated tyrosine phosphorylation of BCRP. Results in the studies indicated that JAK3-mediated phosphorylation of BCRP promotes its interactions with membrane-localized β-catenin essential not only for BCRP expression and surface localization, but also for the maintenance of BCRP-mediated intestinal drug efflux and barrier functions. It was observed that reduced intestinal JAK3 expression during human obesity or JAK3 knockout in mouse or siRNA-mediated β-catenin knockdown in human intestinal epithelial cells all result in significant loss of intestinal BCRP expression and compromised colonic drug efflux and barrier functions. These results uncover a mechanism of BCRP-mediated intestinal drug efflux and barrier functions and establish a role for BCRP in preventing CLGI-associated obesity both in humans and in mice. These studies have wider implications not only in our understanding of physiological and pathophysiological mechanisms of intestinal barrier functions and CLGI associated chronic inflammatory diseases but also in protein-mediated drug-efflux pharmacokinetic and pharmacodynamic characteristics of oral drug formulations. [21]

A compromise in intestinal mucosal functions is associated with several chronic inflammatory diseases. Previous report suggested that obese humans have a reduced expression of intestinal Jak3 and a deficiency of Jak3 in mice led to predisposition to obesity-associated metabolic syndrome. Since meta-analyses show cognitive impairment as co-morbidity of obesity, recent studies demonstrate the mechanistic role of Jak3 in obesity associated cognitive impairment. It is shown that high-fat diet (HFD) suppresses Jak3 expression both in the intestinal mucosa and in the brain of wild-type mice. Recapitulating these conditions using global (Jak3-KO) and intestinal epithelial cell-specific conditional (IEC-Jak3-KO) mice and using cognitive testing, western analysis, flow cytometry, immunofluorescence microscopy and 16s rRNA sequencing, It was demonstrated that HFD-induced Jak3 deficiency is responsible for cognitive impairments in mice, and these are, in part, specifically due to intestinal epithelial deficiency of Jak3. It was revealed that Jak3 deficiency leads to gut dysbiosis, compromised TREM-2-functions-mediated activation of microglial cells, increased TLR-4 expression and HIF1-α-mediated inflammation in the brain. Together, these led to compromised microglial-functions-mediated increased deposition of Aβ and pTau, responsible for cognitive impairments. Collectively, these data illustrated how the drivers of obesity promote cognitive impairment and demonstrate the underlying mechanism where HFD-mediated impact on IEC-Jak3 deficiency is responsible for Jak3 deficiency in the brain, reduced microglial TREM2 expression, microglial activation and compromised clearance of Aβ and pTau as the mechanism during obesity-associated cognitive impairments. Thus, the study not only demonstrated the mechanism of obesity-associated cognitive impairments but also characterize the tissue-specific role of Jak3 in such conditions through mucosal tolerance, gut–brain axis, and regulation of microglial functions. [22]

Signal transduction model

Activation of JAK3 by cytokine receptors that contain the common gamma chain (gc) JAK3 signal transduction.jpg
Activation of JAK3 by cytokine receptors that contain the common gamma chain (γc)

JAK3 is activated only by cytokines whose receptors contain the common gamma chain (γc) subunit: IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Cytokine binding induces the association of separate cytokine receptor subunits and the activation of the receptor-associated JAKs. In the absence of cytokine, JAKs lack protein tyrosine kinase activity. Once activated, the JAKs create docking sites for the STAT transcription factors by phosphorylation of specific tyrosine residues on the cytokine receptor subunits. STATs (signal transduction and activators of transcription) are members of a family of transcription factors, and they have src homology 2 (SH2) domains that allow them to bind to these phosphorylated tyrosine residues. After undergoing JAK-mediated phosphorylation, the STAT transcription factors dimerize, translocate to the nucleus, bind DNA at specific elements and induce expression of specific genes. [7] Cytokine receptors selectively activate particular JAK-STAT pathways to induce transcription of different genes. IL-2 and IL-4 activate JAK1, JAK3 and STAT5. [23]

Disease relevance

JAK3 activating mutations are found in 16% of T-cell acute lymphoblastic leukemia (T-ALL) patients. [24] In addition, oncogenic JAK3 mutations have been identified in acute megakaryoblastic leukemia, T-cell prolymphocytic leukemia, and juvenile myelomonocytic leukemia and natural killer T-cell lymphoma (NK/T-lymphoma). Most mutations are located in the pseudokinase and kinase domain of the JAK3 protein. Most JAK3 mutations are dependent on JAK1 kinase activity for their transforming capacities. [15]

Inactivating mutations of JAK3 are known causes of immune deficiency. [25] Mutations in the common gamma chain (γc) result in X-linked severe combined immunodeficiency (X-SCID). Since γc specifically associates with JAK3, mutations in JAK3 also result in SCID. [26] Deficiency of JAK3 blocks signaling of the following cytokines and their effects: [9]

Overall, JAK3 deficiency results in the phenotype of SCID characterized by TB+NK, which indicates the absence of T cells and NK cells. [27] Although B cells are present, they are non-functional due to defective B cell activation and impaired antibody class switching.

Since JAK3 is required for immune cell development, targeting JAK3 could be a useful strategy to generate a novel class of immunosuppressant drugs. Moreover, unlike other JAKs, JAK3 is primarily expressed in hematopoietic cells, so a highly specific JAK3 inhibitor should have precise effects on immune cells and minimal pleiotropic defects. [9] The selectivity of a JAK3 inhibitor would also have advantages over the current widely used immunosuppressant drugs, which have abundant targets and diverse side effects. A JAK3 inhibitor could be useful for treating autoimmune diseases, especially those in which a particular cytokine receptor has a direct role on disease pathogenesis. For example, signaling through the IL-15 receptor is known to be important in the development rheumatoid arthritis, [28] and the receptors for IL-4 and IL-9 play roles in the development of allergic responses. [29]

A selective JAK3 inhibitor, tofacitinib (CP-690550), has been developed and shown promise in clinical trials. This drug has nanomolar potency against JAK3 and was shown to be effective in preventing transplant rejection in a nonhuman primate renal transplant model. [9] Tofacitinib also demonstrated immunosuppressive activity in phase I and II clinical trials of rheumatoid arthritis, psoriasis and organ transplant rejection. [30] Tofacitinib is currently being market by Pfizer as Xeljanz for the treatment of rheumatoid arthritis. [31]

Interactions

Janus kinase 3 has been shown to interact with CD247, [32] TIAF1 [33] and IL2RG. [34] [35]

Related Research Articles

Janus kinase (JAK) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. They were initially named "just another kinase" 1 and 2, but were ultimately published as "Janus kinase". The name is taken from the two-faced Roman god of beginnings, endings and duality, Janus, because the JAKs possess two near-identical phosphate-transferring domains. One domain exhibits the kinase activity, while the other negatively regulates the kinase activity of the first.

<span class="mw-page-title-main">Paracrine signaling</span>

Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.

The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals outside of a cell to the cell nucleus, resulting in the activation of genes through the process of transcription. There are three key parts of JAK-STAT signalling: Janus kinases (JAKs), signal transducer and activator of transcription proteins (STATs), and receptors. Disrupted JAK-STAT signalling may lead to a variety of diseases, such as skin conditions, cancers, and disorders affecting the immune system.

<span class="mw-page-title-main">IL-2 receptor</span> Lymphocyte receptor specific for Interleukin-2

The interleukin-2 receptor (IL-2R) is a heterotrimeric protein expressed on the surface of certain immune cells, such as lymphocytes, that binds and responds to a cytokine called IL-2.

<span class="mw-page-title-main">Interleukin 31</span>

Interleukin-31 (IL-31) is a protein that in humans is encoded by the IL31 gene that resides on chromosome 12. IL-31 is an inflammatory cytokine that helps trigger cell-mediated immunity against pathogens. It has also been identified as a major player in a number of chronic inflammatory diseases, including atopic dermatitis.

<span class="mw-page-title-main">Glycoprotein 130</span> Mammalian protein found in Homo sapiens

Glycoprotein 130 is a transmembrane protein which is the founding member of the class of all cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement. As with other type I cytokine receptors, gp130 possesses a WSXWS amino acid motif that ensures correct protein folding and ligand binding. It interacts with Janus kinases to elicit an intracellular signal following receptor interaction with its ligand. Structurally, gp130 is composed of five fibronectin type-III domains and one immunoglobulin-like C2-type (immunoglobulin-like) domain in its extracellular portion.

<span class="mw-page-title-main">GAB2</span>

GRB2-associated-binding protein 2 also known as GAB2 is a protein that in humans is encoded by the GAB2 gene.

<span class="mw-page-title-main">Oncostatin M receptor</span> Protein-coding gene in the species Homo sapiens

Oncostatin-M specific receptor subunit beta also known as the Oncostatin M receptor (OSMR), is one of the receptor proteins for oncostatin M, that in humans is encoded by the OSMR gene.

<span class="mw-page-title-main">Tyrosine kinase 2</span> Enzyme and coding gene in humans

Non-receptor tyrosine-protein kinase TYK2 is an enzyme that in humans is encoded by the TYK2 gene.

<span class="mw-page-title-main">Janus kinase 2</span> Non-receptor tyrosine kinase and coding gene in humans

Janus kinase 2 is a non-receptor tyrosine kinase. It is a member of the Janus kinase family and has been implicated in signaling by members of the type II cytokine receptor family, the GM-CSF receptor family, the gp130 receptor family, and the single chain receptors.

<span class="mw-page-title-main">Janus kinase 1</span>

JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.

<span class="mw-page-title-main">Granulocyte-macrophage colony-stimulating factor receptor</span> Protein-coding gene in the species Homo sapiens

The granulocyte-macrophage colony-stimulating factor receptor also known as CD116, is a receptor for granulocyte-macrophage colony-stimulating factor, which stimulates the production of white blood cells. In contrast to M-CSF and G-CSF which are lineage specific, GM-CSF and its receptor play a role in earlier stages of development. The receptor is primarily located on neutrophils, eosinophils and monocytes/macrophages, it is also on CD34+ progenitor cells (myeloblasts) and precursors for erythroid and megakaryocytic lineages, but only in the beginning of their development.

<span class="mw-page-title-main">STAT4</span> Protein-coding gene in the species Homo sapiens

Signal transducer and activator of transcription 4 (STAT4) is a transcription factor belonging to the STAT protein family, composed of STAT1, STAT2, STAT3, STAT5A, STAT5B, STAT6. STAT proteins are key activators of gene transcription which bind to DNA in response to cytokine gradient. STAT proteins are a common part of Janus kinase (JAK)- signalling pathways, activated by cytokines.STAT4 is required for the development of Th1 cells from naive CD4+ T cells and IFN-γ production in response to IL-12. There are two known STAT4 transcripts, STAT4α and STAT4β, differing in the levels of interferon-gamma production downstream.

<span class="mw-page-title-main">IRS1</span>

Insulin receptor substrate 1 (IRS-1) is a signaling adapter protein that in humans is encoded by the IRS-1 gene. It is a 131 kDa protein with amino acid sequence of 1242 residues. It contains a single pleckstrin homology (PH) domain at the N-terminus and a PTB domain ca. 40 residues downstream of this, followed by a poorly conserved C-terminus tail. Together with IRS2, IRS3 (pseudogene) and IRS4, it is homologous to the Drosophila protein chico, whose disruption extends the median lifespan of flies up to 48%. Similarly, Irs1 mutant mice experience moderate life extension and delayed age-related pathologies.

<span class="mw-page-title-main">IL2RB</span> Protein-coding gene in the species Homo sapiens

Interleukin-2 receptor subunit beta is a protein that in humans is encoded by the IL2RB gene. Also known as CD122; IL15RB; P70-75.

The interleukin-5 receptor is a type I cytokine receptor. It is a heterodimer of the interleukin 5 receptor alpha subunit and CSF2RB.

Interleukin-28 receptor is a type II cytokine receptor found largely in epithelial cells. It binds type 3 interferons, interleukin-28 A, Interleukin-28B, interleukin 29 and interferon lambda 4. It consists of an α chain and shares a common β subunit with the interleukin-10 receptor. Binding to the interleukin-28 receptor, which is restricted to select cell types, is important for fighting infection. Binding of the type 3 interferons to the receptor results in activation of the JAK/STAT signaling pathway.

A non-receptor tyrosine kinase (nRTK) is a cytosolic enzyme that is responsible for catalysing the transfer of a phosphate group from a nucleoside triphosphate donor, such as ATP, to tyrosine residues in proteins. Non-receptor tyrosine kinases are a subgroup of protein family tyrosine kinases, enzymes that can transfer the phosphate group from ATP to a tyrosine residue of a protein (phosphorylation). These enzymes regulate many cellular functions by switching on or switching off other enzymes in a cell.

<span class="mw-page-title-main">Tyrosine phosphorylation</span> Phosphorylation of peptidyl-tyrosine

Tyrosine phosphorylation is the addition of a phosphate (PO43−) group to the amino acid tyrosine on a protein. It is one of the main types of protein phosphorylation. This transfer is made possible through enzymes called tyrosine kinases. Tyrosine phosphorylation is a key step in signal transduction and the regulation of enzymatic activity.

Candidalysin is a cytolytic 31-amino acid α-helical amphipathic peptide toxin secreted by the opportunistic pathogen Candida albicans. This toxin is a fungal example of a classical virulence factor. Hyphal morphogenesis in C. albicans is associated with damage to host epithelial cells; during this process Candidalysin is released and intercalates in host membranes. Candidalysin promotes damage of oral epithelial cells and induces lactate dehydrogenase release and calcium ion influx. It is unique in the fact that it is the first peptide toxin to be identified in any human fungal pathogen.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000105639 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031805 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Riedy MC, Dutra AS, Blake TB, Modi W, Lal BK, Davis J, Bosse A, O'Shea JJ, Johnston JA (October 1996). "Genomic sequence, organization, and chromosomal localization of human JAK3". Genomics. 37 (1): 57–61. doi:10.1006/geno.1996.0520. PMID   8921370.
  6. Hoffman SM, Lai KS, Tomfohrde J, Bowcock A, Gordon LA, Mohrenweiser HW (July 1997). "JAK3 maps to human chromosome 19p12 within a cluster of proto-oncogenes and transcription factors". Genomics. 43 (1): 109–11. doi:10.1006/geno.1997.4792. PMID   9226382.
  7. 1 2 3 Leonard WJ, O'Shea JJ (1998). "Jaks and STATs: biological implications". Annual Review of Immunology. 16: 293–322. doi:10.1146/annurev.immunol.16.1.293. PMID   9597132.
  8. Kumar, Narendra; Kuang, Longxiang; Villa, Ryan; Kumar, Priyam; Mishra, Jayshree (2021-03-17). "Mucosal Epithelial Jak Kinases in Health and Diseases". Mediators of Inflammation. 2021: 1–17. doi: 10.1155/2021/6618924 . PMC   7990561 . PMID   33814980.
  9. 1 2 3 4 O'Shea JJ, Park H, Pesu M, Borie D, Changelian P (May 2005). "New strategies for immunosuppression: interfering with cytokines by targeting the Jak/Stat pathway". Current Opinion in Rheumatology. 17 (3): 305–11. doi:10.1097/01.bor.0000160781.07174.db. PMID   15838241. S2CID   25413202.
  10. 1 2 Mishra J, Karanki SS, Kumar N (November 2012). "Identification of molecular switch regulating interactions of Janus kinase 3 with cytoskeletal proteins". The Journal of Biological Chemistry. 287 (49): 41386–91. doi: 10.1074/jbc.C112.363507 . PMC   3510836 . PMID   23012362.
  11. 1 2 Mishra J, Waters CM, Kumar N (March 2012). "Molecular mechanism of interleukin-2-induced mucosal homeostasis". American Journal of Physiology. Cell Physiology. 302 (5): C735-47. doi:10.1152/ajpcell.00316.2011. PMC   3311301 . PMID   22116305.
  12. 1 2 Kumar N, Mishra J, Narang VS, Waters CM (October 2007). "Janus kinase 3 regulates interleukin 2-induced mucosal wound repair through tyrosine phosphorylation of villin". The Journal of Biological Chemistry. 282 (42): 30341–5. doi: 10.1074/jbc.C600319200 . PMID   17537734.
  13. Johnston JA, Kawamura M, Kirken RA, Chen YQ, Blake TB, Shibuya K, Ortaldo JR, McVicar DW, O'Shea JJ (July 1994). "Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2". Nature. 370 (6485): 151–3. Bibcode:1994Natur.370..151J. doi:10.1038/370151a0. PMID   8022485. S2CID   4363750.
  14. Fujimoto M, Naka T, Nakagawa R, Kawazoe Y, Morita Y, Tateishi A, Okumura K, Narazaki M, Kishimoto T (August 2000). "Defective thymocyte development and perturbed homeostasis of T cells in STAT-induced STAT inhibitor-1/suppressors of cytokine signaling-1 transgenic mice". Journal of Immunology. 165 (4): 1799–806. doi: 10.4049/jimmunol.165.4.1799 . PMID   10925257.
  15. 1 2 Degryse S, de Bock CE, Cox L, Demeyer S, Gielen O, Mentens N, Jacobs K, Geerdens E, Gianfelici V, Hulselmans G, Fiers M, Aerts S, Meijerink JP, Tousseyn T, Cools J (November 2014). "JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model". Blood. 124 (20): 3092–100. doi: 10.1182/blood-2014-04-566687 . PMID   25193870.
  16. Henkels KM, Frondorf K, Gonzalez-Mejia ME, Doseff AL, Gomez-Cambronero J (January 2011). "IL-8-induced neutrophil chemotaxis is mediated by Janus kinase 3 (JAK3)". FEBS Letters. 585 (1): 159–66. doi:10.1016/j.febslet.2010.11.031. PMC   3021320 . PMID   21095188.
  17. Mishra J, Verma RK, Alpini G, Meng F, Kumar N (November 2013). "Role of Janus kinase 3 in mucosal differentiation and predisposition to colitis". The Journal of Biological Chemistry. 288 (44): 31795–806. doi: 10.1074/jbc.M113.504126 . PMC   3814773 . PMID   24045942.
  18. Mishra J, Kumar N (June 2014). "Adapter protein Shc regulates Janus kinase 3 phosphorylation". The Journal of Biological Chemistry. 289 (23): 15951–6. doi: 10.1074/jbc.C113.527523 . PMC   4047368 . PMID   24795043.
  19. Mishra J, Verma RK, Alpini G, Meng F, Kumar N (December 2015). "Role of Janus Kinase 3 in Predisposition to Obesity-associated Metabolic Syndrome". The Journal of Biological Chemistry. 290 (49): 29301–12. doi: 10.1074/jbc.M115.670331 . PMC   4705936 . PMID   26451047.
  20. Mishra, Jayshree; Das, Jugal Kishore; Kumar, Narendra (2017). "Janus kinase 3 regulates adherens junctions and epithelial mesenchymal transition through β-catenin". Journal of Biological Chemistry. 292 (40): 16406–16419. doi: 10.1074/jbc.M117.811802 . PMC   5633104 . PMID   28821617.
  21. Mishra, Jayshree; Simonsen, Randall; Kumar, Narendra (2019). "Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity". Journal of Biological Chemistry. 294 (48): 18337–18348. doi: 10.1074/jbc.RA119.007758 . PMC   6885638 . PMID   31653704.
  22. Kumar, Premranjan; Mishra, Jayshree; Kumar, Narendra (2022). "Mechanistic Role of Jak3 in Obesity-Associated Cognitive Impairments". Nutrients. 14 (18): 3715. doi: 10.3390/nu14183715 . PMC   9505565 . PMID   36145091.
  23. Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN (July 1994). "Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells". Nature. 370 (6485): 153–7. Bibcode:1994Natur.370..153W. doi:10.1038/370153a0. PMID   8022486. S2CID   11711979.
  24. Vicente C, Schwab C, Broux M, Geerdens E, Degryse S, Demeyer S, Lahortiga I, Elliott A, Chilton L, La Starza R, Mecucci C, Vandenberghe P, Goulden N, Vora A, Moorman AV, Soulier J, Harrison CJ, Clappier E, Cools J (October 2015). "Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia". Haematologica. 100 (10): 1301–10. doi:10.3324/haematol.2015.130179. PMC   4591762 . PMID   26206799.
  25. Cox L, Cools J (March 2011). "JAK3 specific kinase inhibitors: when specificity is not enough". Chemistry & Biology. 18 (3): 277–8. doi: 10.1016/j.chembiol.2011.03.002 . PMID   21439469.
  26. Suzuki K, Nakajima H, Saito Y, Saito T, Leonard WJ, Iwamoto I (February 2000). "Janus kinase 3 (Jak3) is essential for common cytokine receptor gamma chain (gamma(c))-dependent signaling: comparative analysis of gamma(c), Jak3, and gamma(c) and Jak3 double-deficient mice". International Immunology . 12 (2): 123–32. doi: 10.1093/intimm/12.2.123 . PMID   10653847.
  27. O'Shea JJ, Gadina M, Schreiber RD (April 2002). "Cytokine signaling in 2002: new surprises in the Jak/Stat pathway". Cell. 109 (Suppl): S121-31. doi: 10.1016/S0092-8674(02)00701-8 . PMID   11983158. S2CID   8251837.
  28. Ferrari-Lacraz S, Zanelli E, Neuberg M, Donskoy E, Kim YS, Zheng XX, Hancock WW, Maslinski W, Li XC, Strom TB, Moll T (November 2004). "Targeting IL-15 receptor-bearing cells with an antagonist mutant IL-15/Fc protein prevents disease development and progression in murine collagen-induced arthritis". Journal of Immunology. 173 (9): 5818–26. doi: 10.4049/jimmunol.173.9.5818 . PMID   15494535.
  29. Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA (October 2000). "IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development" (PDF). Immunity. 13 (4): 573–83. doi:10.1016/S1074-7613(00)00056-X. hdl: 2262/82420 . PMID   11070175.
  30. West K (May 2009). "CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders". Current Opinion in Investigational Drugs. 10 (5): 491–504. PMID   19431082.
  31. "Long-Term Effectiveness And Safety Of CP-690,550 For The Treatment Of Rheumatoid Arthritis". ClinicalTrials.gov. 29 February 2012. Retrieved 1 March 2012.
  32. Tomita K, Saijo K, Yamasaki S, Iida T, Nakatsu F, Arase H, Ohno H, Shirasawa T, Kuriyama T, O'Shea JJ, Saito T (July 2001). "Cytokine-independent Jak3 activation upon T cell receptor (TCR) stimulation through direct association of Jak3 and the TCR complex". The Journal of Biological Chemistry. 276 (27): 25378–85. doi: 10.1074/jbc.M011363200 . PMID   11349123.
  33. Ji H, Zhai Q, Zhu J, Yan M, Sun L, Liu X, Zheng Z (April 2000). "A novel protein MAJN binds to Jak3 and inhibits apoptosis induced by IL-2 deprival". Biochemical and Biophysical Research Communications. 270 (1): 267–71. doi:10.1006/bbrc.2000.2413. PMID   10733938.
  34. Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN (November 1994). "Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits". Science. 266 (5187): 1045–7. Bibcode:1994Sci...266.1045M. doi:10.1126/science.7973659. PMID   7973659.
  35. Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, Berg M, McVicar DW, Witthuhn BA, Silvennoinen O (November 1994). "Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID". Science. 266 (5187): 1042–5. Bibcode:1994Sci...266.1042R. doi:10.1126/science.7973658. PMID   7973658.

Further reading