Proto-oncogene tyrosine-protein kinase Src

Last updated
SRC
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SRC , ASV, SRC1, c-p60-Src, SRC proto-oncogene, non-receptor tyrosine kinase, THC6
External IDs OMIM: 190090; MGI: 98397; HomoloGene: 21120; GeneCards: SRC; OMA:SRC - orthologs
EC number 2.7.10.2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005417
NM_198291

NM_001025395
NM_009271

RefSeq (protein)

NP_005408
NP_938033

NP_001020566
NP_033297

Location (UCSC) Chr 20: 37.34 – 37.41 Mb Chr 2: 157.42 – 157.47 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Proto-oncogene tyrosine-protein kinase Src, also known as proto-oncogene c-Src, or simply c-Src (cellular Src; pronounced "sarc", as it is short for sarcoma), is a non-receptor tyrosine kinase protein that in humans is encoded by the SRC gene. It belongs to a family of Src family kinases and is similar to the v-Src (viral Src) gene of Rous sarcoma virus. It includes an SH2 domain, an SH3 domain and a tyrosine kinase domain. Two transcript variants encoding the same protein have been found for this gene. [5]

c-Src phosphorylates specific tyrosine residues in other tyrosine kinases. It plays a role in the regulation of embryonic development and cell growth. An elevated level of activity of c-Src is suggested to be linked to cancer progression by promoting other signals. [6] Mutations in c-Src could be involved in the malignant progression of colon cancer. c-Src should not be confused with CSK (C-terminal Src kinase), an enzyme that phosphorylates c-Src at its C-terminus and provides negative regulation of Src's enzymatic activity.

c-Src was originally discovered by American scientists J. Michael Bishop and Harold E. Varmus, for which they were awarded the 1989 Nobel Prize in Physiology or Medicine. [7]

Discovery

In 1979, J. Michael Bishop and Harold E. Varmus discovered that normal chickens possess a gene that is structurally closely related to v-Src . [8] The normal cellular gene was called c-src (cellular-src). [9] This discovery changed the current thinking about cancer from a model wherein cancer is caused by a foreign substance (a viral gene) to one where a gene that is normally present in the cell can cause cancer. It is believed that at one point an ancestral virus mistakenly incorporated the c-Src gene of its cellular host. Eventually this normal gene mutated into an abnormally functioning oncogene within the Rous sarcoma virus. Once the oncogene is transfected back into a chicken, it can lead to cancer.

Structure

There are 9 members of the Src family kinases: c-Src, Yes, Fyn, Fgr, Yrk, Lyn, Blk, Hck, and Lck. [10] The expression of these Src family members are not the same throughout all tissues and cell types. Src, Fyn and Yes are expressed ubiquitously in all cell types while the others are generally found in hematopoietic cells. [11] [12] [13] [14]

c-Src is made up of 6 functional regions: Src homology 4 domain (SH4 domain), unique region, SH3 domain, SH2 domain, catalytic domain and short regulatory tail. [15] When Src is inactive, the phosphorylated tyrosine group at the 527 position interacts with the SH2 domain which helps the SH3 domain interact with the flexible linker domain and thereby keeps the inactive unit tightly bound. The activation of c-Src causes the dephosphorylation of the tyrosine 527. This induces long-range allostery via protein domain dynamics, causing the structure to be destabilized, resulting in the opening up of the SH3, SH2 and kinase domains and the autophosphorylation of the residue tyrosine 416. [16] [17] [18]

c-Src can be activated by many transmembrane proteins that include: adhesion receptors, receptor tyrosine kinases, G-protein coupled receptors and cytokine receptors. Most studies have looked at the receptor tyrosine kinases and examples of these are platelet derived growth factor receptor (PDGFR) pathway and epidermal growth factor receptor (EGFR).

Src contains at least three flexible protein domains, which, in conjunction with myristoylation, can mediate attachment to membranes and determine subcellular localization. [19]

Function

This proto-oncogene may play a role in the regulation of embryonic development and cell growth.

When src is activated, it promotes survival, angiogenesis, proliferation and invasion pathways. It also regulates angiogenic factors and vascular permeability after focal cerebral ischemia-reperfusion, [20] [21] and regulates matrix metalloproteinase-9 activity after intracerebral hemorrhage. [22]

Role in cancer

The activation of the c-Src pathway has been observed in about 50% of tumors from colon, liver, lung, breast and the pancreas. [23] Since the activation of c-Src leads to the promotion of survival, angiogenesis, proliferation and invasion pathways, the aberrant growth of tumors in cancers is observed. A common mechanism is that there are genetic mutations that result in the increased activity or the overexpression of the c-Src leading to the constant activation of the c-Src.

Colon cancer

The activity of c-Src has been best characterized in colon cancer. Researchers have shown that Src expression is 5 to 8 fold higher in premalignant polyps than normal mucosa. [24] [25] [26] The elevated c-Src levels have also been shown to have a correlation with advanced stages of the tumor, size of tumor, and metastatic potential of tumors. [27] [28]

Breast cancer

EGFR activates c-Src while EGF also increases the activity of c-Src. In addition, overexpression of c-Src increases the response of EGFR-mediated processes. So both EGFR and c-Src enhance the effects of one another. Elevated expression levels of c-Src were found in human breast cancer tissues compared to normal tissues. [29] [30] [31]

Overexpression of Human Epidermal Growth Factor Receptor 2 (HER2), also known as erbB2, is correlated with a worse prognosis for breast cancer. [32] [33] Thus, c-Src plays a key role in the tumor progression of breast cancers.

Prostate cancer

Members of the Src family kinases Src, Lyn and Fgr are highly expressed in malignant prostate cells compared to normal prostate cells. [34] When the primary prostate cells are treated with KRX-123, which is an inhibitor of Lyn, the cells in vitro were reduced in proliferation, migration and invasive potential. [35] So the use of a tyrosine kinase inhibitor is a possible way of reducing the progression of prostate cancers.

As a drug target

A number of tyrosine kinase inhibitors that target c-Src tyrosine kinase (as well as related tyrosine kinases) have been developed for therapeutic use. [36] One notable example is dasatinib which has been approved for the treatment of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive (PH+) acute lymphocytic leukemia (ALL). [37] Dasatinib is also in clinical trials for the use in non-Hodgkin’s lymphoma, metastatic breast cancer and prostate cancer. Other tyrosine kinase inhibitor drugs that are in clinical trials include bosutinib, [38] bafetinib, Saracatinib(AZD-0530), XLl-999, KX01 and XL228. [6] HSP90 inhibitor NVP-BEP800 has been described to affect stability of Src tyrosine kinase and growth of T-cell and B-cell acute lymphoblastic leukemias. [39]

Interactions

Src (gene) has been shown to interact with the following signaling pathways:

Survival

Angiogenesis

Proliferation

Motility

Additional images

Overview of signal transduction pathways involved in apoptosis. Signal transduction pathways.svg
Overview of signal transduction pathways involved in apoptosis.
l
i
p
i
d
-
b
i
n
d
i
n
g
P
h
o
s
p
h
o
s
e
r
i
n
e
P
h
o
s
p
h
o
s
e
r
i
n
e
SH3
S
p
l
i
c
i
n
g

v
a
r
i
a
n
t
SH2
V
a
r
i
a
n
t
P
h
o
s
p
h
o
t
y
r
o
s
i
n
e

h
y
d
r
o
p
h
o
b
i
c

b
i
n
d
i
n
g

p
o
c
k
e
t
V
a
r
i
a
n
t
Tyrosine kinase
A
c
t
i
v
e

s
i
t
e

S
H
3
/
S
H
2

d
o
m
a
i
n

i
n
t
e
r
f
a
c
e

A
T
P
P
r
o
t
o
n

a
c
c
e
p
t
o
r
a
c
t
i
v
a
t
i
o
n

l
o
o
p

P
h
o
s
p
h
o
t
y
r
o
s
i
n
e
S
-
n
i
t
r
o
s
o
c
y
s
t
e
i
n
e

P
h
o
s
p
h
o
t
h
r
e
o
n
i
n
e
P
h
o
s
p
h
o
t
y
r
o
s
i
n
e
P
h
o
s
p
h
o
t
y
r
o
s
i
n
e
P
S
/
P
T
/
P
S

(
C
D
K
5
)
P
h
o
s
p
h
o
t
y
r

F
A
K
2
/
a
u
t
o
s
w
a
p
p
e
d

d
i
m
e
r
/
p
e
p
t
i
d
e

b
i
n
d
a
u
t
o
i
n
h
i
b
i
t
o
r
y

p
T
y
r












Top row:   Beta-strand region

   Hydrogen bonded turn    Helical region

site22lipid-binding
site1717Phosphoserine
site3535Phosphoserine
site6969Phosphoserine
site7474Phosphothreonine
site7575Phosphoserine; by CDK5
region8793Beta-strand region
region88143SH3
site8888swapped dimer interface [polypeptide binding]
site9393peptide ligand binding site [polypeptide binding]
region99102Beta-strand region
region110114Beta-strand region
region117117Splicing variant
region118126Beta-strand region
region127129Hydrogen bonded turn
region132136Beta-strand region
region137139Helical region
region140142Beta-strand region
region146148Helical region
region147247SH2
region152154Beta-strand region
site158158autoinhibitory site [polypeptide binding]
site158158phosphotyrosine binding pocket [polypeptide binding]
region158165Helical region
region167170Beta-strand region
region174179Beta-strand region
region176176Variant
region181183Beta-strand region
region187195Beta-strand region
site187187Phosphotyrosine (By similarity)
region196198Hydrogen bonded turn
region199209Beta-strand region
site205205hydrophobic binding pocket [polypeptide binding]
region211213Beta-strand region
region215218Beta-strand region
region221225Beta-strand region
region226233Helical region
region237237Variant
region240242Beta-strand region
region256259Beta-strand region
region267269Helical region
region270519Tyrosine kinase
region270278Beta-strand region
site276276Active site (ATP binding)
region283289Beta-strand region
site290290SH3/SH2 domain interface [polypeptide binding]
region290292Hydrogen bonded turn
region293299Beta-strand region
site298298ATP
region302304Hydrogen bonded turn
region307319Helical region
region328332Beta-strand region
region334336Beta-strand region
region338341Beta-strand region
region349353Helical region
region355358Helical region
region363382Helical region
site389389Proton acceptor
region392394Helical region
region395397Beta-strand region
region399401Helical region
region403405Beta-strand region
site406406activation loop (A-loop)
region410413Helical region
region417420Helical region
site419419Phosphotyrosine; by autocatalysis; alternate
site419419Phosphotyrosine; by FAK2; alternate (By similarity)
region423426Hydrogen bonded turn
region429431Helical region
region434439Helical region
site439439Phosphotyrosine
region444459Helical region
region460462Hydrogen bonded turn
region471479Helical region
region492501Helical region
site501501S-nitrosocysteine (By similarity)
region506508Helical region
site511511Phosphothreonine
region512520Helical region
region521523Hydrogen bonded turn
site522522Phosphotyrosine
site530530Phosphotyrosine; by CSK

Related Research Articles

<span class="mw-page-title-main">Oncogene</span> Gene that has the potential to cause cancer

An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.

<span class="mw-page-title-main">Tyrosine kinase</span> Enzyme

A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.

<span class="mw-page-title-main">Epidermal growth factor receptor</span> Transmembrane protein

The epidermal growth factor receptor is a transmembrane protein that is a receptor for members of the epidermal growth factor family of extracellular protein ligands.

<span class="mw-page-title-main">Insulin-like growth factor 1 receptor</span> Cell receptor protein found in humans

The insulin-like growth factor 1 (IGF-1) receptor is a protein found on the surface of human cells. It is a transmembrane receptor that is activated by a hormone called insulin-like growth factor 1 (IGF-1) and by a related hormone called IGF-2. It belongs to the large class of tyrosine kinase receptors. This receptor mediates the effects of IGF-1, which is a polypeptide protein hormone similar in molecular structure to insulin. IGF-1 plays an important role in growth and continues to have anabolic effects in adults – meaning that it can induce hypertrophy of skeletal muscle and other target tissues. Mice lacking the IGF-1 receptor die late in development, and show a dramatic reduction in body mass. This testifies to the strong growth-promoting effect of this receptor.

<span class="mw-page-title-main">Receptor tyrosine kinase</span> Class of enzymes

Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode receptor tyrosine kinase proteins. Receptor tyrosine kinases have been shown not only to be key regulators of normal cellular processes but also to have a critical role in the development and progression of many types of cancer. Mutations in receptor tyrosine kinases lead to activation of a series of signalling cascades which have numerous effects on protein expression. The receptors are generally activated by dimerization and substrate presentation. Receptor tyrosine kinases are part of the larger family of protein tyrosine kinases, encompassing the receptor tyrosine kinase proteins which contain a transmembrane domain, as well as the non-receptor tyrosine kinases which do not possess transmembrane domains.

<span class="mw-page-title-main">KIT (gene)</span> Mammalian protein and protein-coding gene

Proto-oncogene c-KIT is the gene encoding the receptor tyrosine kinase protein known as tyrosine-protein kinase KIT, CD117 or mast/stem cell growth factor receptor (SCFR). Multiple transcript variants encoding different isoforms have been found for this gene. KIT was first described by the German biochemist Axel Ullrich in 1987 as the cellular homolog of the feline sarcoma viral oncogene v-kit.

v-Src is a gene found in Rous sarcoma virus (RSV) that encodes a tyrosine kinase that causes a type of cancer in chickens.

<span class="mw-page-title-main">Fibroblast growth factor receptor 1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 1 (FGFR-1), also known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2 / Pfeiffer syndrome, and CD331, is a receptor tyrosine kinase whose ligands are specific members of the fibroblast growth factor family. FGFR-1 has been shown to be associated with Pfeiffer syndrome, and clonal eosinophilias.

<span class="mw-page-title-main">FYN</span> Mammalian protein found in Homo sapiens

Proto-oncogene tyrosine-protein kinase Fyn is an enzyme that in humans is encoded by the FYN gene.

<span class="mw-page-title-main">SHC1</span> Protein-coding gene in humans

SHC-transforming protein 1 is a protein that in humans is encoded by the SHC1 gene. SHC has been found to be important in the regulation of apoptosis and drug resistance in mammalian cells.

<span class="mw-page-title-main">ERBB3</span> Protein found in humans

Receptor tyrosine-protein kinase erbB-3, also known as HER3, is a membrane bound protein that in humans is encoded by the ERBB3 gene.

<span class="mw-page-title-main">STAT5A</span> Protein-coding gene in the species Homo sapiens

Signal transducer and activator of transcription 5A is a protein that in humans is encoded by the STAT5A gene. STAT5A orthologs have been identified in several placentals for which complete genome data are available.

<span class="mw-page-title-main">BCAR1</span> Protein-coding gene in the species Homo sapiens

Breast cancer anti-estrogen resistance protein 1 is a protein that in humans is encoded by the BCAR1 gene.

<span class="mw-page-title-main">EPH receptor A2</span> Protein-coding gene in humans

EPH receptor A2 is a protein that in humans is encoded by the EPHA2 gene.

<span class="mw-page-title-main">Tyrosine-protein kinase Yes</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase Yes is a non-receptor tyrosine kinase that in humans is encoded by the YES1 gene.

<span class="mw-page-title-main">AXL receptor tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase receptor UFO is a protein that in human is encoded by the AXL gene. The gene was initially designated as UFO, in allusion to the unidentified function of this protein. However, in the years since its discovery, research into AXL's expression profile and mechanism has made it an increasingly attractive target, especially for cancer therapeutics. In recent years, AXL has emerged as a key facilitator of immune escape and drug-resistance by cancer cells, leading to aggressive and metastatic cancers.

<span class="mw-page-title-main">BMX (gene)</span> Type of enzyme

Cytoplasmic tyrosine-protein kinase BMX is an enzyme that in humans is encoded by the BMX gene.

<span class="mw-page-title-main">ROS1</span> Protein-coding gene in the species Homo sapiens

Proto-oncogene tyrosine-protein kinase ROS is an enzyme that in humans is encoded by the ROS1 gene.

A non-receptor tyrosine kinase (nRTK) is a cytosolic enzyme that is responsible for catalysing the transfer of a phosphate group from a nucleoside triphosphate donor, such as ATP, to tyrosine residues in proteins. Non-receptor tyrosine kinases are a subgroup of protein family tyrosine kinases, enzymes that can transfer the phosphate group from ATP to a tyrosine residue of a protein (phosphorylation). These enzymes regulate many cellular functions by switching on or switching off other enzymes in a cell.

Src kinase family is a family of non-receptor tyrosine kinases that includes nine members: Src, Yes, Fyn, and Fgr, forming the SrcA subfamily, Lck, Hck, Blk, and Lyn in the SrcB subfamily, and Frk in its own subfamily. Frk has homologs in invertebrates such as flies and worms, and Src homologs exist in organisms as diverse as unicellular choanoflagellates, but the SrcA and SrcB subfamilies are specific to vertebrates. Src family kinases contain six conserved domains: a N-terminal myristoylated segment, a SH2 domain, a SH3 domain, a linker region, a tyrosine kinase domain, and C-terminal tail.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000197122 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027646 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)".
  6. 1 2 Wheeler DL, Iida M, Dunn EF (July 2009). "The role of Src in solid tumors". Oncologist. 14 (7): 667–78. doi:10.1634/theoncologist.2009-0009. PMC   3303596 . PMID   19581523.
  7. "The Nobel Prize in Physiology or Medicine 1989: J. Michael Bishop, Harold E. Varmus". Nobelprize.org. 1989-10-09. for their discovery of 'the cellular origin of retroviral oncogenes'
  8. Stehelin D, Fujita DJ, Padgett T, Varmus HE, Bishop JM (1977). "Detection and enumeration of transformation-defective strains of avian sarcoma virus with molecular hybridization". Virology. 76 (2): 675–84. doi:10.1016/0042-6822(77)90250-1. PMID   190771.
  9. Oppermann H, Levinson AD, Varmus HE, Levintow L, Bishop JM (April 1979). "Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src)". Proc. Natl. Acad. Sci. U.S.A. 76 (4): 1804–8. Bibcode:1979PNAS...76.1804O. doi: 10.1073/pnas.76.4.1804 . PMC   383480 . PMID   221907.
  10. Thomas SM, Brugge JS (1997). "Cellular functions regulated by Src family kinases". Annu. Rev. Cell Dev. Biol. 13: 513–609. doi:10.1146/annurev.cellbio.13.1.513. PMID   9442882.
  11. Cance WG, Craven RJ, Bergman M, Xu L, Alitalo K, Liu ET (December 1994). "Rak, a novel nuclear tyrosine kinase expressed in epithelial cells". Cell Growth Differ. 5 (12): 1347–55. PMID   7696183.
  12. Lee J, Wang Z, Luoh SM, Wood WI, Scadden DT (January 1994). "Cloning of FRK, a novel human intracellular SRC-like tyrosine kinase-encoding gene". Gene. 138 (1–2): 247–51. doi:10.1016/0378-1119(94)90817-6. PMID   7510261.
  13. Oberg-Welsh C, Welsh M (January 1995). "Cloning of BSK, a murine FRK homologue with a specific pattern of tissue distribution". Gene. 152 (2): 239–42. doi:10.1016/0378-1119(94)00718-8. PMID   7835707.
  14. Thuveson M, Albrecht D, Zürcher G, Andres AC, Ziemiecki A (April 1995). "iyk, a novel intracellular protein tyrosine kinase differentially expressed in the mouse mammary gland and intestine". Biochem. Biophys. Res. Commun. 209 (2): 582–9. doi:10.1006/bbrc.1995.1540. PMID   7733928.
  15. Arbesú M, Maffei M, Cordeiro TN, Teixeira JM, Pérez Y, Bernadó P, Roche S, Pons M (March 2017). "The Unique Domain Forms a Fuzzy Intramolecular Complex in Src Family Kinases". Structure. 25 (4): 630–640.e4. doi: 10.1016/j.str.2017.02.011 . PMID   28319009.
  16. Cooper JA, Gould KL, Cartwright CA, Hunter T (March 1986). "Tyr527 is phosphorylated in pp60c-src: implications for regulation". Science. 231 (4744): 1431–4. Bibcode:1986Sci...231.1431C. doi:10.1126/science.2420005. PMID   2420005.
  17. Okada M, Nakagawa H (December 1989). "A protein tyrosine kinase involved in regulation of pp60c-src function". J. Biol. Chem. 264 (35): 20886–93. doi: 10.1016/S0021-9258(19)30019-5 . PMID   2480346.
  18. Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H (May 1991). "Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src". Nature. 351 (6321): 69–72. Bibcode:1991Natur.351...69N. doi:10.1038/351069a0. PMID   1709258. S2CID   4363527.
  19. Kaplan JM, Varmus HE, Bishop JM (March 1990). "The src protein contains multiple domains for specific attachment to membranes". Molecular and Cellular Biology. 10 (3): 1000–9. doi:10.1128/mcb.10.3.1000. PMC   360952 . PMID   1689455.
  20. Zan L, Wu H, Jiang J, Zhao S, Song Y, Teng G, Li H, Jia Y, Zhou M, Zhang X, Qi J, Wang J (2011). "Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema". Neurochem. Int. 58 (8): 872–9. doi:10.1016/j.neuint.2011.02.014. PMC   3100427 . PMID   21334414.
  21. Zan L, Zhang X, Xi Y, Wu H, Song Y, Teng G, Li H, Qi J, Wang J (2013). "Src regulates angiogenic factors and vascular permeability after focal cerebral ischemia-reperfusion". Neuroscience. 262 (3): 118–128. doi:10.1016/j.neuroscience.2013.12.060. PMC   3943922 . PMID   24412374.
  22. Zhao X, Wu T, Chang CF, et al. (2015). "Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice". Brain Behav. Immun. 46: 293–310. doi:10.1016/j.bbi.2015.02.011. PMC   4422065 . PMID   25697396.
  23. Dehm SM, Bonham K (April 2004). "SRC gene expression in human cancer: the role of transcriptional activation". Biochem. Cell Biol. 82 (2): 263–74. doi:10.1139/o03-077. PMID   15060621.
  24. Bolen JB, Rosen N, Israel MA (November 1985). "Increased pp60c-src tyrosyl kinase activity in human neuroblastomas is associated with amino-terminal tyrosine phosphorylation of the src gene product". Proc. Natl. Acad. Sci. U.S.A. 82 (21): 7275–9. Bibcode:1985PNAS...82.7275B. doi: 10.1073/pnas.82.21.7275 . PMC   390832 . PMID   2414774.
  25. Cartwright CA, Kamps MP, Meisler AI, Pipas JM, Eckhart W (June 1989). "pp60c-src activation in human colon carcinoma". J. Clin. Invest. 83 (6): 2025–33. doi:10.1172/JCI114113. PMC   303927 . PMID   2498394.
  26. Talamonti MS, Roh MS, Curley SA, Gallick GE (January 1993). "Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer". J. Clin. Invest. 91 (1): 53–60. doi:10.1172/JCI116200. PMC   329994 . PMID   7678609.
  27. Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE (January 2002). "Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis". Cancer. 94 (2): 344–51. doi: 10.1002/cncr.10221 . PMID   11900220. S2CID   2103781.
  28. Cartwright CA, Meisler AI, Eckhart W (January 1990). "Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis". Proc. Natl. Acad. Sci. U.S.A. 87 (2): 558–62. Bibcode:1990PNAS...87..558C. doi: 10.1073/pnas.87.2.558 . PMC   53304 . PMID   2105487.
  29. Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, Hennipman A, Michels AA, Staal GE (September 1992). "Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product". Cancer Res. 52 (17): 4773–8. PMID   1380891.
  30. Biscardi JS, Belsches AP, Parsons SJ (April 1998). "Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells". Mol. Carcinog. 21 (4): 261–72. doi:10.1002/(SICI)1098-2744(199804)21:4<261::AID-MC5>3.0.CO;2-N. PMID   9585256. S2CID   24236532.
  31. Verbeek BS, Vroom TM, Adriaansen-Slot SS, Ottenhoff-Kalff AE, Geertzema JG, Hennipman A, Rijksen G (December 1996). "c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis". J. Pathol. 180 (4): 383–8. doi:10.1002/(SICI)1096-9896(199612)180:4<383::AID-PATH686>3.0.CO;2-N. PMID   9014858. S2CID   26892937.
  32. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (January 1987). "Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene". Science. 235 (4785): 177–82. Bibcode:1987Sci...235..177S. doi:10.1126/science.3798106. PMID   3798106.
  33. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (May 1989). "Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer". Science. 244 (4905): 707–12. Bibcode:1989Sci...244..707S. doi:10.1126/science.2470152. PMID   2470152.
  34. Nam S, Kim D, Cheng JQ, Zhang S, Lee JH, Buettner R, Mirosevich J, Lee FY, Jove R (October 2005). "Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells". Cancer Res. 65 (20): 9185–9. doi: 10.1158/0008-5472.CAN-05-1731 . PMID   16230377.
  35. Chang YM, Bai L, Yang I (2002). "Survey of Src activity and Src-related growth and migration in prostate cancer lines". Proc Am Assoc Cancer Res. 62: 2505a.
  36. Musumeci F, Schenone S, Brullo C, Botta M (April 2012). "An update on dual Src/Abl inhibitors". Future Med Chem. 4 (6): 799–822. doi:10.4155/fmc.12.29. PMID   22530642.
  37. Breccia M, Salaroli A, Molica M, Alimena G (2013). "Systematic review of dasatinib in chronic myeloid leukemia". OncoTargets Ther. 6: 257–65. doi: 10.2147/OTT.S35360 . PMC   3615898 . PMID   23569389.
  38. Amsberg GK, Koschmieder S (2013). "Profile of bosutinib and its clinical potential in the treatment of chronic myeloid leukemia". OncoTargets Ther. 6: 99–106. doi: 10.2147/OTT.S19901 . PMC   3594007 . PMID   23493838.
  39. Mshaik R, Simonet J, Georgievski A, Jamal L, Bechoua S, Ballerini P, Bellaye PS, Mlamla Z, Pais de Barros JP, Geissler A, Francin PJ, Girodon F, Garrido C, Quéré R (March 2021). "HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias". Blood Cancer J. 3 (11): 61. doi: 10.1038/s41408-021-00450-2 . PMC   7973815 . PMID   33737511.