Non-receptor tyrosine-protein kinase TYK2 is an enzyme that in humans is encoded by the TYK2 gene. [5] [6]
TYK2 was the first member of the JAK family that was described (the other members are JAK1, JAK2, and JAK3). [7] It has been implicated in IFN-α, IL-6, IL-10 and IL-12 signaling.
This gene encodes a member of the tyrosine kinase and, to be more specific, the Janus kinases (JAKs) protein families. This protein associates with the cytoplasmic domain of type I and type II cytokine receptors and promulgate cytokine signals by phosphorylating receptor subunits. It is also component of both the type I and type III interferon signaling pathways. As such, it may play a role in anti-viral immunity. [6]
Cytokines play pivotal roles in immunity and inflammation by regulating the survival, proliferation, differentiation, and function of immune cells, as well as cells from other organ systems. [8] Hence, targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to affect intracellular signaling. Cytokines including interleukins, interferons and hemopoietins activate the Janus kinases, which associate with their cognate receptors. [9]
The mammalian JAK family has four members: JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2). [7] The connection between Jaks and cytokine signaling was first revealed when a screen for genes involved in interferon type I (IFN-1) signaling identified TYK2 as an essential element, which is activated by an array of cytokine receptors. [10] TYK2 has broader and profound functions in humans than previously appreciated on the basis of analysis of murine models, which indicate that TYK2 functions primarily in IL-12 and type I-IFN signaling. TYK2 deficiency has more dramatic effects in human cells than in mouse cells. However, in addition to IFN-α and -β and IL-12 signaling, TYK2 has major effects on the transduction of IL-23, IL-10, and IL-6 signals. Since, IL-6 signals through the gp-130 receptor-chain that is common to a large family of cytokines, including IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), ciliary neurotrophic factor, cardiotrophin 1, cardiotrophin-like cytokine, and LIF, TYK2 might also affect signaling through these cytokines. Recently, it has been recognized that IL-12 and IL-23 share ligand and receptor subunits that activate TYK2. IL-10 is a critical anti-inflammatory cytokine, and IL-10−/− mice suffer from fatal, systemic autoimmune disease.
TYK2 is activated by IL-10, and its deficiency affects the ability to generate and respond to IL-10. [11] Under physiological conditions, immune cells are, in general, regulated by the action of many cytokines and it has become clear that cross-talk between different cytokine-signalling pathways is involved in the regulation of the JAK–STAT pathway. [12]
It is now widely accepted that atherosclerosis is a result of cellular and molecular events characteristic of inflammation. [13] Vascular inflammation can be caused by upregulation of Ang-II, which is produced locally by inflamed vessels and induces synthesis and secretion of IL-6, a cytokine responsible for induction of angiotensinogen synthesis in liver through JAK/STAT3 pathway, which gets activated through high affinity membrane protein receptors on target cells, termed IL-6R-chain recruiting gp-130 that is associated with tyrosine kinases (Jaks 1/2, and TYK2 kinase). [14] Cytokines IL-4 and IL-13 gets elevated in lungs of chronically suffered asthmatics. Signalling through IL-4/IL-13 complexes is thought to occur through IL-4Rα-chain, which is responsible for activation of JAK-1 and TYK2 kinases. [15] A role of TYK2 in rheumatoid arthritis is directly observed in TYK2-deficient mice that were resistant to experimental arthritis. [16] TYK2−/− mice displayed a lack of responsiveness to a small amount of IFN-α, but they respond normally to a high concentration of IFN-α/β. [12] [17] In addition, these mice respond normally to IL-6 and IL-10, suggesting that TYK2 is dispensable for mediating for IL-6 and IL-10 signaling and does not play a major role in IFN-α signaling. Although TYK2−/− mice are phenotypically normal, they exhibit abnormal responses to inflammatory challenges in a variety of cells isolated from TYK2−/− mice. [18] The most remarkable phenotype observed in TYK2-deficient macrophages was lack of nitric oxide production upon stimulation with LPS. Further elucidation of molecular mechanisms of LPS signaling, showed that TYK2 and IFN-β deficiency leads resistance to LPS-induced endotoxin shock, whereas STAT1-deficient mice are susceptible. [19] Development of a TYK2 inhibitor appears to be a rational approach in the drug discovery. [20]
A mutation in this gene has been associated with hyperimmunoglobulin E syndrome (HIES), a primary immunodeficiency characterized by elevated serum immunoglobulin E. [21] [22] [23]
TYK2 appears to play a central role in the inflammatory cascade responses in the pathogenesis of immune-mediated inflammatory diseases such as psoriasis. [24] The drug deucravacitinib (marketed as Sotyktu), a small-molecule TYK2 inhibitor, was approved for moderate-to-severe plaque psoriasis in 2022.
The P1104A allele of TYK2 has been shown to increase risk of tuberculosis when carried as a homozygote; population genetic analyses suggest that the arrival of tuberculosis in Europe drove the frequency of that allele down three-fold about 2,000 years before present. [25]
Tyrosine kinase 2 has been shown to interact with FYN, [26] PTPN6, [27] IFNAR1, [28] [29] Ku80 [30] and GNB2L1. [31]
Janus kinase (JAK) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. They were initially named "just another kinase" 1 and 2, but were ultimately published as "Janus kinase". The name is taken from the two-faced Roman god of beginnings, endings and duality, Janus, because the JAKs possess two near-identical phosphate-transferring domains. One domain exhibits the kinase activity, while the other negatively regulates the kinase activity of the first.
The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals outside of a cell to the cell nucleus, resulting in the activation of genes through the process of transcription. There are three key parts of JAK-STAT signalling: Janus kinases (JAKs), signal transducer and activator of transcription proteins (STATs), and receptors. Disrupted JAK-STAT signalling may lead to a variety of diseases, such as skin conditions, cancers, and disorders affecting the immune system.
Interleukin 12 (IL-12) is an interleukin that is naturally produced by dendritic cells, macrophages, neutrophils, and human B-lymphoblastoid cells (NC-37) in response to antigenic stimulation. IL-12 belongs to the family of interleukin-12. IL-12 family is unique in comprising the only heterodimeric cytokines, which includes IL-12, IL-23, IL-27 and IL-35. Despite sharing many structural features and molecular partners, they mediate surprisingly diverse functional effects.
Oncostatin M, also known as OSM, is a protein that in humans is encoded by the OSM gene.
The interferon-α/β receptor (IFNAR) is a virtually ubiquitous membrane receptor which binds endogenous type I interferon (IFN) cytokines. Endogenous human type I IFNs include many subtypes, such as interferons-α, -β, -ε, -κ, -ω, and -ζ.
Signal transducer and activator of transcription 1 (STAT1) is a transcription factor which in humans is encoded by the STAT1 gene. It is a member of the STAT protein family.
Tyrosine-protein kinase JAK3 is a tyrosine kinase enzyme that in humans is encoded by the JAK3 gene.
Janus kinase 2 is a non-receptor tyrosine kinase. It is a member of the Janus kinase family and has been implicated in signaling by members of the type II cytokine receptor family, the GM-CSF receptor family, the gp130 receptor family, and the single chain receptors.
JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.
Signal transducer and activator of transcription 6 (STAT6) is a transcription factor that belongs to the Signal Transducer and Activator of Transcription (STAT) family of proteins. The proteins of STAT family transmit signals from a receptor complex to the nucleus and activate gene expression. Similarly as other STAT family proteins, STAT6 is also activated by growth factors and cytokines. STAT6 is mainly activated by cytokines interleukin-4 and interleukin-13.
Signal transducer and activator of transcription 4 (STAT4) is a transcription factor belonging to the STAT protein family, composed of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6. STAT proteins are key activators of gene transcription which bind to DNA in response to cytokine gradient. STAT proteins are a common part of Janus kinase (JAK)- signalling pathways, activated by cytokines.STAT4 is required for the development of Th1 cells from naive CD4+ T cells and IFN-γ production in response to IL-12. There are two known STAT4 transcripts, STAT4α and STAT4β, differing in the levels of interferon-gamma production downstream.
Signal transducer and activator of transcription 2 is a protein that in humans is encoded by the STAT2 gene. It is a member of the STAT protein family. This protein is critical to the biological response of type I interferons (IFNs). STAT2 sequence identity between mouse and human is only 68%.
Insulin receptor substrate 2 is a protein that in humans is encoded by the IRS2 gene.
Interferon-alpha/beta receptor beta chain is a protein that in humans is encoded by the IFNAR2 gene.
Interleukin-10 receptor subunit alpha is a subunit for the interleukin-10 receptor. IL10RA is its human gene.
Interferon alpha-2 is a protein that in humans is encoded by the IFNA2 gene.
Interferon regulatory factor 5 is a protein that in humans is encoded by the IRF5 gene. The IRF family is a group of transcription factors that are involved in signaling for virus responses in mammals along with regulation of certain cellular functions.
Interleukin-28 receptor is a type II cytokine receptor found largely in epithelial cells. It binds type 3 interferons, interleukin-28 A, Interleukin-28B, interleukin 29 and interferon lambda 4. It consists of an α chain and shares a common β subunit with the interleukin-10 receptor. Binding to the interleukin-28 receptor, which is restricted to select cell types, is important for fighting infection. Binding of the type 3 interferons to the receptor results in activation of the JAK/STAT signaling pathway.
Interferon-alpha/beta receptor alpha chain is a protein that in humans is encoded by the IFNAR1 gene.
A non-receptor tyrosine kinase (nRTK) is a cytosolic enzyme that is responsible for catalysing the transfer of a phosphate group from a nucleoside triphosphate donor, such as ATP, to tyrosine residues in proteins. Non-receptor tyrosine kinases are a subgroup of protein family tyrosine kinases, enzymes that can transfer the phosphate group from ATP to a tyrosine residue of a protein (phosphorylation). These enzymes regulate many cellular functions by switching on or switching off other enzymes in a cell.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.