PIAS1

Last updated
PIAS1
Protein PIAS1 PDB 1v66.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PIAS1 , DDXBP1, GBP, GU/RH-II, ZMIZ3, protein inhibitor of activated STAT 1
External IDs OMIM: 603566 MGI: 1913125 HomoloGene: 22953 GeneCards: PIAS1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_016166
NM_001320687

NM_019663

RefSeq (protein)

NP_001307616
NP_057250

NP_062637

Location (UCSC) Chr 15: 68.05 – 68.2 Mb Chr 9: 62.79 – 62.9 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

E3 SUMO-protein ligase PIAS1 is an enzyme that in humans is encoded by the PIAS1 gene. [5] [6] [7]

Contents

Function

This gene encodes a member of the mammalian PIAS [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1)] family. This member contains a putative zinc-binding motif and a highly acidic region. It inhibits STAT1-mediated gene activation and the DNA binding activity, binds to Gu protein/RNA helicase II/DEAD box polypeptide 21, and interacts with androgen receptor (AR). It functions in testis as a nuclear receptor transcriptional coregulator and may have a role in AR initiation and maintenance of spermatogenesis. [7]

Interactions

PIAS1 has been shown to interact with:

Related Research Articles

The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals outside of a cell to the cell nucleus, resulting in the activation of genes through the process of transcription. There are three key parts of JAK-STAT signalling: Janus kinases (JAKs), signal transducer and activator of transcription proteins (STATs), and receptors. Disrupted JAK-STAT signalling may lead to a variety of diseases, such as skin conditions, cancers, and disorders affecting the immune system.

<span class="mw-page-title-main">Androgen receptor</span> Mammalian protein found in Homo sapiens

The androgen receptor (AR), also known as NR3C4, is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.

<span class="mw-page-title-main">EP300</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase p300 also known as p300 HAT or E1A-associated protein p300 also known as EP300 or p300 is an enzyme that, in humans, is encoded by the EP300 gene. It functions as histone acetyltransferase that regulates transcription of genes via chromatin remodeling by allowing histone proteins to wrap DNA less tightly. This enzyme plays an essential role in regulating cell growth and division, prompting cells to mature and assume specialized functions (differentiate), and preventing the growth of cancerous tumors. The p300 protein appears to be critical for normal development before and after birth.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 2</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 2 also known as SMAD family member 2 or SMAD2 is a protein that in humans is encoded by the SMAD2 gene. MAD homolog 2 belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways.

<span class="mw-page-title-main">Glycoprotein 130</span> Mammalian protein found in Homo sapiens

Glycoprotein 130 is a transmembrane protein which is the founding member of the class of all cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement. As with other type I cytokine receptors, gp130 possesses a WSXWS amino acid motif that ensures correct protein folding and ligand binding. It interacts with Janus kinases to elicit an intracellular signal following receptor interaction with its ligand. Structurally, gp130 is composed of five fibronectin type-III domains and one immunoglobulin-like C2-type (immunoglobulin-like) domain in its extracellular portion.

<span class="mw-page-title-main">Protein inhibitor of activated STAT</span>

Protein inhibitor of activated STAT (PIAS), also known as E3 SUMO-protein ligase PIAS, is a protein that regulates transcription in mammals. PIAS proteins act as transcriptional co-regulators with at least 60 different proteins in order to either activate or repress transcription. The transcription factors STAT, NF-κB, p73, and p53 are among the many proteins that PIAS interacts with.

<span class="mw-page-title-main">STAT1</span> Protein-coding gene in the species Homo sapiens

Signal transducer and activator of transcription 1 (STAT1) is a transcription factor which in humans is encoded by the STAT1 gene. It is a member of the STAT protein family.

<span class="mw-page-title-main">Janus kinase 1</span>

JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.

<span class="mw-page-title-main">Nuclear receptor coactivator 2</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor coactivator 2 also known as NCoA-2 is a protein that in humans is encoded by the NCOA2 gene. NCoA-2 is also frequently called glucocorticoid receptor-interacting protein 1 (GRIP1), steroid receptor coactivator-2 (SRC-2), or transcriptional mediators/intermediary factor 2 (TIF2).

<span class="mw-page-title-main">UBE2I</span>

SUMO-conjugating enzyme UBC9 is an enzyme that in humans is encoded by the UBE2I gene. It is also sometimes referred to as "ubiquitin conjugating enzyme E2I" or "ubiquitin carrier protein 9", even though these names do not accurately describe its function.

<span class="mw-page-title-main">Fibroblast growth factor receptor 4</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 4 is a protein that in humans is encoded by the FGFR4 gene. FGFR4 has also been designated as CD334.

<span class="mw-page-title-main">BAG1</span> Protein-coding gene in the species Homo sapiens

BAG family molecular chaperone regulator 1 is a protein that in humans is encoded by the BAG1 gene.

<span class="mw-page-title-main">STAT5A</span>

Signal transducer and activator of transcription 5A is a protein that in humans is encoded by the STAT5A gene. STAT5A orthologs have been identified in several placentals for which complete genome data are available.

<span class="mw-page-title-main">PIAS4</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS4 is one of several protein inhibitor of activated STAT (PIAS) proteins. It is also known as protein inhibitor of activated STAT protein gamma, and is an enzyme that in humans is encoded by the PIAS4 gene.

<span class="mw-page-title-main">Protein inhibitor of activated STAT2</span>

E3 SUMO-protein ligase PIAS2 is an enzyme that in humans is encoded by the PIAS2 gene.

<span class="mw-page-title-main">PIAS3</span>

E3 SUMO-protein ligase PIAS3 is an enzyme that in humans is encoded by the PIAS3 gene.

<span class="mw-page-title-main">NCOA6</span>

Nuclear receptor coactivator 6 is a protein that in humans is encoded by the NCOA6 gene.

<span class="mw-page-title-main">Interleukin 13 receptor, alpha 1</span> Protein-coding gene in the species Homo sapiens

Interleukin 13 receptor, alpha 1, also known as IL13RA1 and CD213A1, is a human gene.

<span class="mw-page-title-main">GRIP1 (gene)</span>

Glutamate receptor-interacting protein 1 is a protein that in humans is encoded by the GRIP1 gene.

<span class="mw-page-title-main">ZNF76</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 76 is a protein that in humans is encoded by the ZNF76 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000033800 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032405 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (September 1998). "Inhibition of Stat1-mediated gene activation by PIAS1". Proc Natl Acad Sci U S A. 95 (18): 10626–10631. Bibcode:1998PNAS...9510626L. doi: 10.1073/pnas.95.18.10626 . PMC   27945 . PMID   9724754.
  6. Valdez BC, Henning D, Perlaky L, Busch RK, Busch H (July 1997). "Cloning and characterization of Gu/RH-II binding protein". Biochem Biophys Res Commun. 234 (2): 335–340. doi:10.1006/bbrc.1997.6642. PMID   9177271.
  7. 1 2 "Entrez Gene: PIAS1 protein inhibitor of activated STAT, 1".
  8. Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD (2004). "Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription". Nucleic Acids Res. 32 (2): 598–610. doi:10.1093/nar/gkh195. PMC   373322 . PMID   14752048.
  9. 1 2 3 Kahyo T, Nishida T, Yasuda H (September 2001). "Involvement of PIAS1 in the sumoylation of tumor suppressor p53". Mol. Cell. 8 (3): 713–8. doi: 10.1016/s1097-2765(01)00349-5 . PMID   11583632.
  10. Gallagher WM, Argentini M, Sierra V, Bracco L, Debussche L, Conseiller E (June 1999). "MBP1: a novel mutant p53-specific protein partner with oncogenic properties". Oncogene. 18 (24): 3608–16. doi: 10.1038/sj.onc.1202937 . PMID   10380882.
  11. Liao J, Fu Y, Shuai K (May 2000). "Distinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction". Proc. Natl. Acad. Sci. U.S.A. 97 (10): 5267–72. Bibcode:2000PNAS...97.5267L. doi: 10.1073/pnas.97.10.5267 . PMC   25817 . PMID   10805787.
  12. 1 2 Lee BH, Yoshimatsu K, Maeda A, Ochiai K, Morimatsu M, Araki K, Ogino M, Morikawa S, Arikawa J (December 2003). "Association of the nucleocapsid protein of the Seoul and Hantaan hantaviruses with small ubiquitin-like modifier-1-related molecules". Virus Res. 98 (1): 83–91. doi:10.1016/j.virusres.2003.09.001. PMID   14609633.
  13. 1 2 Sapetschnig A, Rischitor G, Braun H, Doll A, Schergaut M, Melchior F, Suske G (October 2002). "Transcription factor Sp3 is silenced through SUMO modification by PIAS1". EMBO J. 21 (19): 5206–15. doi:10.1093/emboj/cdf510. PMC   129032 . PMID   12356736.

Further reading