Chromosome 15

Last updated
Chromosome 15
Human male karyotpe high resolution - Chromosome 15 cropped.png
Human chromosome 15 pair after G-banding.
One is from mother, one is from father.
Human male karyotpe high resolution - Chromosome 15.png
Chromosome 15 pair
in human male karyogram.
Features
Length (bp)99,753,195 bp
(CHM13)
No. of genes 561 (CCDS) [1]
Type Autosome
Centromere position Acrocentric [2]
(19.0 Mbp [3] )
Complete gene lists
CCDS Gene list
HGNC Gene list
UniProt Gene list
NCBI Gene list
External map viewers
Ensembl Chromosome 15
Entrez Chromosome 15
NCBI Chromosome 15
UCSC Chromosome 15
Full DNA sequences
RefSeq NC_000015 (FASTA)
GenBank CM000677 (FASTA)

Chromosome 15 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 15 spans about 99.7 million base pairs (the building material of DNA) and represents between 3% and 3.5% of the total DNA in cells. Chromosome 15 is an acrocentric chromosome, with a very small short arm (the "p" arm, for "petite"), which contains few protein coding genes among its 19 million base pairs. It has a larger long arm (the "q" arm) that is gene rich, spanning about 83 million base pairs.

Contents

The human leukocyte antigen gene for β2-microglobulin is found on chromosome 15, as well as the FBN1 gene, coding for both fibrillin-1 (a protein critical to the proper functioning of connective tissue), and asprosin (a small protein produced from part of the transcribed FBN1 gene mRNA), which is involved in fat metabolism.

Genes

Number of genes

The following are some of the gene count estimates of human chromosome 15. Because researchers use different approaches to genome annotation their predictions of the number of genes on each chromosome varies (for technical details, see gene prediction). Among various projects, the collaborative consensus coding sequence project (CCDS) takes an extremely conservative strategy. So CCDS's gene number prediction represents a lower bound on the total number of human protein-coding genes. [4]

Estimated by Protein-coding genes Non-coding RNA genes Pseudogenes SourceRelease date
CCDS 561 [1] 2016-09-08
HGNC 559328433 [5] 2017-05-12
Ensembl 605992508 [6] 2017-03-29
UniProt 601 [7] 2018-02-28
NCBI 629716594 [8] [9] [10] 2017-05-19

Gene list

The following is a partial list of genes on human chromosome 15. For complete list, see the link in the infobox on the right.

  • AAGAB: alpha- and gamma-adaptin binding protein
  • ACSBG1: encoding enzyme Acyl-CoA Synthetase, Bubblegum Family, member 1
  • ADH1: alcohol dehydrogenase
  • ARHGAP11B: a human-specific gene encoding the Rho GTPase activating protein 11B, that amplifies basal progenitors, controls neural progenitor proliferation, and contributes to neocortex folding.
  • ARPIN: encoding protein Actin related protein 2/3 complex inhibitor
  • ARPP-19: encoding protein cAMP-regulated phosphoprotein 19
  • B2MR: encoding protein Beta-2-microglobulin regulator
  • C15orf15: encoding protein Probable ribosome biogenesis protein RLP24
  • C15orf32: encoding protein Uncharacterized protein C15orf32
  • C15orf54: encoding protein Chromosome 15 Open Reading Frame 54
  • CAPN3: Calpain 3 (limb-girdle muscular dystrophy type 2A)
  • CELF6: encoding protein Cugbp elav-like family member 6
  • CHP: Calcium binding protein P22\
  • CHSY1: Chondroitin sulfate synthase 1
  • CLK3: CDC like kinase 3
  • ClpX: encoding enzyme ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial
  • COMMD4: encoding protein COMM domain-containing protein 4
  • CPEB1: Cytoplasmic polyladenylation element binding protein 1
  • CRAT37: encoding protein Cervical cancer-associated transcript 37
  • CYP19A1: encoding protein Cytochrome p450 family 19 subfamily a member 1
  • DTWD1:
  • ELL3: encoding protein Elongation factor RNA polymerase II-like 3
  • FAH: fumarylacetoacetate hydrolase (fumarylacetoacetase)
  • FAM214A: encoding protein Protein FAM214A
  • FBN1: fibrillin 1 (Marfan syndrome)
  • FOXB1: encoding protein Forkhead box B1
  • GATM: Glycine aminotransferase, mitochondrial
  • GCHFR: GTP cyclohydrolase 1 feedback regulatory protein
  • GLC1I: encoding protein Glaucoma 1, open angle, i
  • GLCE: D-glucuronyl C5-epimerase
  • GOLGA8H: encoding protein Golgin subfamily A member 8H
  • HDGFRP3:
  • HEXA: hexosaminidase A (alpha polypeptide)(Tay–Sachs disease)
  • HMG20A: encoding protein High mobility group protein 20A
  • IDDM3 encoding protein Insulin dependent diabetes mellitus 3
  • IMP3: encoding protein U3 small nucleolar ribonucleoprotein protein IMP3
  • ITPKA: encoding enzyme Inositol-trisphosphate 3-kinase A
  • IVD: isovaleryl Coenzyme A dehydrogenase
  • KATNBL1: encoding protein KATNBL1
  • KIAA1024: encoding protein Kiaa1024
  • LARP6 encoding protein La-related protein 6 also known as acheron or La ribonucleoprotein domain family member 6 (LARP6),
  • LCMT2: encoding enzyme Leucine carboxyl methyltransferase 2
  • LINC00926 encoding protein Long intergenic non-protein coding RNA 926
  • MESDC2: encoding protein LDLR chaperone MESD
  • MESP1: encoding protein Mesoderm posterior 1 homolog (mouse)
  • MFAP1: encoding protein Microfibrillar-associated protein 1
  • MCPH4: microcephaly, primary autosomal recessive 4
  • MCTP2: encoding protein Multiple c2 domains, transmembrane 2
  • MIR7-2: encoding protein MicroRNA 7-2
  • MIR1282: encoding protein MicroRNA 1282
  • MIR627: encoding protein MicroRNA 627
  • MIR9-3HG: encoding protein MIR9-3 host gene
  • NIPA2: encoding protein Non-imprinted in Prader-Willi/Angelman syndrome region protein 2
  • NUSAP1: encoding protein Nucleolar and spindle associated protein 1
  • OCA2: oculocutaneous albinism II (pink-eye dilution homolog, mouse)
  • PDCD7: encoding protein Programmed cell death protein 7
  • PIF1: encoding protein PIF1 5'-to-3' DNA helicase
  • PIGBOS1: encoding protein Pigb opposite strand 1
  • PLA2G4D: encoding protein Phospholipase A2 group IVD
  • PLA2G4E: encoding protein Phospholipase A2 group IVE
  • PML: promyelocytic leukemia protein (involved in t(15,17) with RARalpha, predominant cause of acute promyelocytic leukemia.
  • POTEB: encoding protein POTE ankyrin domain family, member B
  • PTPLAD1: encoding enzyme Protein tyrosine phosphatase-like protein PTPLAD1
  • PYGO1: encoding protein Pygopus homolog 1 (Drosophila)
  • RAD51: RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)
  • RMDN3: encoding protein Regulator of microtubule dynamics protein 3
  • RNR3: encoding RNA, ribosomal 45S cluster 3
  • RTF1: encoding protein Rtf1, Paf1/RNA polymerase II complex component, homolog ( S. cerevisiae )
  • RTFDC1: encoding protein Replication termination factor 2
  • SCAMP2: encoding protein Secretory carrier-associated membrane protein 2
  • SCAMP5: encoding protein Secretory carrier-associated membrane protein 5
  • SCZD10: encoding protein Schizophrenia disorder 10 (periodic catatonia)
  • SCAPER: S-phase CyclinA Associated Protein residing in the Endoplasmic Reticulum
  • SENP8: encoding enzyme Sentrin-specific protease 8
  • SERF2: encoding protein Small EDRK-rich factor 2
  • SLC24A5: the gene responsible for at least 1/3 of the skin color differences between races, expressed in the brain and the nervous system
  • SNAPC5: encoding protein snRNA-activating protein complex subunit 5
  • SPN1: encoding protein Snurportin1
  • STRC: stereocilin
  • SUHW4: encoding protein Zinc finger protein 280D
  • SYNM: encoding protein Synemin
  • TEX9: encoding protein Testis-expressed protein 9
  • TGFBR2: location 3p24.2-p25 due to a inactivation mutation
  • TMC3: encoding protein Transmembrane channel like 3
  • TM6SF1: encoding protein Transmembrane 6 superfamily member 1
  • TMCO5A: encoding protein Transmembrane and coiled-coil domains 5A
  • TMED3: encoding protein Transmembrane p24 trafficking protein 3
  • UBE2Q2: encoding protein Ubiquitin conjugating enzyme e2 q2
  • UBE3A: ubiquitin protein ligase E3A (human papilloma virus E6-associated protein, Angelman syndrome)
  • Ube3a-ATS:
  • UNC13C: encoding protein Unc-13 homolog C
  • VPS39: encoding protein hVam6p/Vps39-like protein
  • WDR76: encoding protein Wd repeat domain 76
  • ZNF592: encoding protein Zinc finger protein 592

Chromosomal conditions

The following conditions are caused by mutations in chromosome 15. Two of the conditions (Angelman syndrome and Prader–Willi syndrome) involve a loss of gene activity in the same part of chromosome 15, the 15q11.2-q13.1 region. This discovery provided the first evidence in humans that something beyond genes could determine how the genes are expressed. [11]

Angelman syndrome

The main characteristics of Angelman syndrome are severe intellectual disability, ataxia, lack of speech, and excessively happy demeanor. Angelman syndrome results from a loss of gene activity in a specific part of chromosome 15, the 15q11-q13 region. This region contains a gene called UBE3A that, when mutated or absent, likely causes the characteristic features of this condition. People normally have two copies of the UBE3A gene, one from each parent. Both copies of this gene are active in many of the body's tissues. In the brain, however, only the copy inherited from a person's mother (the maternal copy) is active. If the maternal copy is lost because of a chromosomal change or a gene mutation, a person will have no working copies of the UBE3A gene in the brain.

In most cases (about 70%)[ citation needed ], people with Angelman syndrome have a deletion in the maternal copy of chromosome 15. This chromosomal change deletes the region of chromosome 15 that includes the UBE3A gene. Because the copy of the UBE3A gene inherited from a person's father (the paternal copy) is normally inactive in the brain, a deletion in the maternal chromosome 15 results in no active copies of the UBE3A gene in the brain.

In 3% to 7% of cases,[ citation needed ] Angelman syndrome occurs when a person has two copies of the paternal chromosome 15 instead of one copy from each parent. This phenomenon is called paternal uniparental disomy (UPD). People with paternal UPD for chromosome 15 have two copies of the UBE3A gene, but they are both inherited from the father and are therefore inactive in the brain.

About 10% of Angelman syndrome cases are caused by a mutation in the UBE3A gene, and another 3% result from a defect in the DNA region that controls the activation of the UBE3A gene and other genes on the maternal copy of chromosome 15. In a small percentage of cases, Angelman syndrome may be caused by a chromosomal rearrangement called a translocation or by a mutation in a gene other than UBE3A. These genetic changes can abnormally inactivate the UBE3A gene.

Angelman syndrome can be hereditary, as evidenced by one case where a patient became pregnant with a daughter who also had the condition. [12]

Prader–Willi syndrome

The main characteristics of this condition include polyphagia (extreme, insatiable appetite), mild to moderate developmental delay, hypogonadism resulting in delayed to no puberty, and hypotonia. Prader-Willi syndrome is caused by the loss of active genes in a specific part of chromosome 15, the 15q11-q13 region. People normally have two copies of this chromosome in each cell, one copy from each parent. Prader–Willi syndrome occurs when the paternal copy is partly or entirely missing.

In about 70% of cases,[ citation needed ] Prader–Willi syndrome occurs when the 15q11-q13 region of the paternal chromosome 15 is deleted. The genes in this region are normally active on the paternal copy of the chromosome and are inactive on the maternal copy. Therefore, a person with a deletion in the paternal chromosome 15 will have no active genes in this region.

In about 25% of cases, a person with Prader–Willi syndrome has two maternal copies of chromosome 15 in each cell instead of one copy from each parent. This phenomenon is called maternal uniparental disomy. Because some genes are normally active only on the paternal copy of this chromosome, a person with two maternal copies of chromosome 15 will have no active copies of these genes.

In a small percentage of cases, Prader–Willi syndrome is not caused by a chromosomal rearrangement called a translocation. Rarely, the condition is caused by an abnormality in the DNA region that controls the activity of genes on the paternal chromosome 15. Because patients almost always have difficulty reproducing, Prader–Willi syndrome is generally not hereditary.

Isodicentric chromosome 15

A specific chromosomal change called an isodicentric chromosome 15 (IDIC15) (also known by a number of other names) can affect growth and development. The patient possesses an "extra" or "marker" chromosome. This small extra chromosome is made up of genetic material from chromosome 15 that has been abnormally duplicated (copied) and attached end-to-end. In some cases, the extra chromosome is very small and has no effect on a person's health. A larger isodicentric chromosome 15 can result in weak muscle tone (hypotonia), intellectual disability, seizures, and behavioral problems. [13] Signs and symptoms of autism (a developmental disorder that affects communication and social interaction) have also been associated with the presence of an isodicentric chromosome 15.

Other chromosomal conditions

Other changes in the number or structure of chromosome 15 can cause developmental delays, delayed growth and development, hypotonia, and characteristic facial features.[ citation needed ] These changes include an extra copy of part of chromosome 15 in each cell (partial trisomy 15) or a missing segment of the chromosome in each cell (partial monosomy 15). In some cases, several of the chromosome's DNA building blocks (nucleotides) are deleted or duplicated.

The following diseases are some of those related to genes on chromosome 15:[ citation needed ]

Cytogenetic band

G-banding ideograms of human chromosome 15
Human chromosome 15 ideogram vertical.svg
G-banding ideogram of human chromosome 15 in resolution 850 bphs. Band length in this diagram is proportional to base-pair length. This type of ideogram is generally used in genome browsers (e.g. Ensembl, UCSC Genome Browser).
Human chromosome 15 - 400 550 850 bphs.png
G-banding patterns of human chromosome 15 in three different resolutions (400, [15] 550 [16] and 850 [3] ). Band length in this diagram is based on the ideograms from ISCN (2013). [17] This type of ideogram represents actual relative band length observed under a microscope at the different moments during the mitotic process. [18]
G-bands of human chromosome 15 in resolution 850 bphs [3]
Chr.Arm [19] Band [20] ISCN
start [21]
ISCN
stop [21]
Basepair
start
Basepair
stop
Stain [22] Density
15p13027014,200,000gvar
15p122706314,200,0019,700,000stalk
15p11.263111429,700,00117,500,000gvar
15p11.11142138217,500,00119,000,000acen
15q11.11382148719,000,00120,500,000acen
15q11.21487177320,500,00125,500,000gneg
15q121773196825,500,00127,800,000gpos50
15q13.11968216427,800,00130,000,000gneg
15q13.22164228430,000,00130,900,000gpos50
15q13.32284252430,900,00133,400,000gneg
15q142524276533,400,00139,800,000gpos75
15q15.12765297539,800,00142,500,000gneg
15q15.22975306542,500,00143,300,000gpos25
15q15.33065324543,300,00144,500,000gneg
15q21.13245347144,500,00149,200,000gpos75
15q21.23471362149,200,00152,600,000gneg
15q21.33621384652,600,00158,800,000gpos75
15q22.13846398258,800,00159,000,000gneg
15q22.23982408759,000,00163,400,000gpos25
15q22.314087425263,400,00166,900,000gneg
15q22.324252435766,900,00167,000,000gpos25
15q22.334357450767,000,00167,200,000gneg
15q234507461367,200,00172,400,000gpos25
15q24.14613474872,400,00174,900,000gneg
15q24.24748480874,900,00176,300,000gpos25
15q24.34808492876,300,00178,000,000gneg
15q25.14928504878,000,00181,400,000gpos50
15q25.25048516981,400,00184,700,000gneg
15q25.35169537984,700,00188,500,000gpos50
15q26.15379564988,500,00193,800,000gneg
15q26.25649586093,800,00198,000,000gpos50
15q26.35860607098,000,001101,991,189gneg

Related Research Articles

Prader–Willi syndrome (PWS) is a rare genetic disorder caused by a loss of function of specific genes on chromosome 15. In newborns, symptoms include weak muscles, poor feeding, and slow development. Beginning in childhood, those affected become constantly hungry, which often leads to obesity and type 2 diabetes. Mild to moderate intellectual impairment and behavioral problems are also typical of the disorder. Often, affected individuals have a narrow forehead, small hands and feet, short height, and light skin and hair. Most are unable to have children.

<span class="mw-page-title-main">Chromosome 21</span> Human chromosome

Chromosome 21 is one of the 23 pairs of chromosomes in humans. Chromosome 21 is both the smallest human autosome and chromosome, with 45 million base pairs representing about 1.5 percent of the total DNA in cells. Most people have two copies of chromosome 21, while those with three copies of chromosome 21 have Down syndrome, also called "trisomy 21".

<span class="mw-page-title-main">UBE3A</span> Protein-coding gene in Homo sapiens

Ubiquitin-protein ligase E3A (UBE3A) also known as E6AP ubiquitin-protein ligase (E6AP) is an enzyme that in humans is encoded by the UBE3A gene. This enzyme is involved in targeting proteins for degradation within cells.

<span class="mw-page-title-main">Chromosome 1</span> Human chromosome

Chromosome 1 is the designation for the largest human chromosome. Humans have two copies of chromosome 1, as they do with all of the autosomes, which are the non-sex chromosomes. Chromosome 1 spans about 249 million nucleotide base pairs, which are the basic units of information for DNA. It represents about 8% of the total DNA in human cells.

<span class="mw-page-title-main">Chromosome 6</span> Human chromosome

Chromosome 6 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 6 spans more than 172 million base pairs and represents between 5.5 and 6% of the total DNA in cells. It contains the major histocompatibility complex, which contains over 100 genes related to the immune response, and plays a vital role in organ transplantation.

<span class="mw-page-title-main">Chromosome 13</span> Human chromosome

Chromosome 13 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 13 spans about 113 million base pairs and represents between 3.5 and 4% of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 22</span> Human chromosome

Chromosome 22 is one of the 23 pairs of chromosomes in human cells. Humans normally have two copies of chromosome 22 in each cell. Chromosome 22 is the second smallest human chromosome, spanning about 51 million DNA base pairs and representing between 1.5 and 2% of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 2</span> Human chromosome

Chromosome 2 is one of the twenty-three pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 2 is the second-largest human chromosome, spanning more than 242 million base pairs and representing almost eight percent of the total DNA in human cells.

<span class="mw-page-title-main">Chromosome 3</span> Human chromosome

Chromosome 3 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 3 spans 201 million base pairs and represents about 6.5 percent of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 5</span> Human chromosome

Chromosome 5 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 5 spans about 182 million base pairs and represents almost 6% of the total DNA in cells. Chromosome 5 is the 5th largest human chromosome, yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of non-coding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained.

<span class="mw-page-title-main">Chromosome 8</span> Human chromosome

Chromosome 8 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 8 spans about 146 million base pairs and represents between 4.5 and 5.0% of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 10</span> Human chromosome

Chromosome 10 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 10 spans about 134 million base pairs and represents between 4 and 4.5 percent of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 11</span> Human chromosome

Chromosome 11 is one of the 23 pairs of chromosomes in humans. Humans normally have two copies of this chromosome. Chromosome 11 spans about 135 million base pairs and represents between 4 and 4.5 percent of the total DNA in cells. The shorter arm is termed 11p while the longer arm is 11q. At about 21.5 genes per megabase, chromosome 11 is one of the most gene-rich, and disease-rich, chromosomes in the human genome.

<span class="mw-page-title-main">Chromosome 14</span> Human chromosome

Chromosome 14 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 14 spans about 101 million base pairs and represents between 3 and 3.5% of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 16</span> Human chromosome

Chromosome 16 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 16 spans about 96 million base pairs and represents just under 3% of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 17</span> Human chromosome

Chromosome 17 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 17 spans more than 84 million base pairs and represents between 2.5 and 3% of the total DNA in cells.

<span class="mw-page-title-main">Chromosome 18</span> Human chromosome

Chromosome 18 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 18 spans about 80 million base pairs and represents about 2.5 percent of the total DNA in cells.

<span class="mw-page-title-main">Small nuclear ribonucleoprotein polypeptide N</span> Protein-coding gene in the species Homo sapiens

Small nuclear ribonucleoprotein-associated protein N is a protein that in humans is encoded by the SNRPN gene.

<span class="mw-page-title-main">Angelman syndrome</span> Genetic disorder caused by part of the mothers chromosome 15 being missing

Angelman syndrome or Angelman's syndrome (AS) is a genetic disorder that mainly affects the nervous system. Symptoms include a small head and a specific facial appearance, severe intellectual disability, developmental disability, limited to no functional speech, balance and movement problems, seizures, and sleep problems. Children usually have a happy personality and have a particular interest in water. The symptoms generally become noticeable by one year of age.

<span class="mw-page-title-main">Ube3a-ATS</span> Non-coding RNA in the species Homo sapiens

UBE3A-ATS/Ube3a-ATS (human/mouse), otherwise known as ubiquitin ligase E3A-ATS, is the name for the antisense DNA strand that is transcribed as part of a larger transcript called LNCAT at the Ube3a locus. The Ube3a locus is imprinted and in the central nervous system expressed only from the maternal allele. Silencing of Ube3a on the paternal allele is thought to occur through the Ube3a-ATS part of LNCAT, since non-coding antisense transcripts are often found at imprinted loci. The deletion and/or mutation of Ube3a on the maternal chromosome causes Angelman Syndrome (AS) and Ube3a-ATS may prove to be an important aspect in finding a therapy for this disease. While in patients with AS the maternal Ube3a allele is inactive, the paternal allele is intact but epigenetically silenced. If unsilenced, the paternal allele could be a source of active Ube3a protein in AS patients. Therefore, understanding the mechanisms of how Ube3a-ATS might be involved in silencing the paternal Ube3a may lead to new therapies for AS. This possibility has been demonstrated by a recent study where the drug topotecan, administered to mice suffering from AS, activated expression of the paternal Ube3a gene by lowering the transcription of Ube3a-ATS.

References

Specific references:

  1. 1 2 "Search results – 15[CHR] AND "Homo sapiens"[Organism] AND ("has ccds"[Properties] AND alive[prop]) – Gene". NCBI. CCDS Release 20 for Homo sapiens. 2016-09-08. Retrieved 2017-05-28.
  2. Tom Strachan; Andrew Read (2 April 2010). Human Molecular Genetics. Garland Science. p. 45. ISBN   978-1-136-84407-2.
  3. 1 2 3 Genome Decoration Page, NCBI. Ideogram data for Homo sapience (850 bphs, Assembly GRCh38.p3). Last update 2014-06-03. Retrieved 2017-04-26.
  4. Pertea M, Salzberg SL (2010). "Between a chicken and a grape: estimating the number of human genes". Genome Biol. 11 (5): 206. doi: 10.1186/gb-2010-11-5-206 . PMC   2898077 . PMID   20441615.
  5. "Statistics & Downloads for chromosome 15". HUGO Gene Nomenclature Committee. 2017-05-12. Retrieved 2017-05-19.
  6. "Chromosome 15: Chromosome summary – Homo sapiens". Ensembl Release 88. 2017-03-29. Retrieved 2017-05-19.
  7. "Human chromosome 15: entries, gene names and cross-references to MIM". UniProt. 2018-02-28. Retrieved 2018-03-16.
  8. "Search results – 15[CHR] AND "Homo sapiens"[Organism] AND ("genetype protein coding"[Properties] AND alive[prop]) – Gene". NCBI. 2017-05-19. Retrieved 2017-05-20.
  9. "Search results – 15[CHR] AND "Homo sapiens"[Organism] AND ( ("genetype miscrna"[Properties] OR "genetype ncrna"[Properties] OR "genetype rrna"[Properties] OR "genetype trna"[Properties] OR "genetype scrna"[Properties] OR "genetype snrna"[Properties] OR "genetype snorna"[Properties]) NOT "genetype protein coding"[Properties] AND alive[prop]) – Gene". NCBI. 2017-05-19. Retrieved 2017-05-20.
  10. "Search results – 15[CHR] AND "Homo sapiens"[Organism] AND ("genetype pseudo"[Properties] AND alive[prop]) – Gene". NCBI. 2017-05-19. Retrieved 2017-05-20.
  11. "Teacher's Guide". Ghost in Your Genes (season 35) . Nova (TV series). October 16, 2007. Retrieved 2009-09-26. The program...recounts how one scientist determined how the deletion of a key sequence of DNA on human chromosome 15 could lead to two different syndromes depending on whether the deletion originated from the mother or the father [and] explains that this was the first human evidence that something other than genes themselves could determine how genes are expressed.
  12. Lossie A, Driscoll D (1999). "Transmission of Angelman syndrome by an affected mother". Genet Med. 1 (6): 262–6. doi: 10.1097/00125817-199909000-00004 . PMID   11258627.
  13. "What is Dup15q Syndrome? – Dup15q". www.dup15q.org. Archived from the original on 2017-09-06. Retrieved 2017-09-05.
  14. "Photic Sneeze Reflex | AncestryDNA® Traits Learning Hub". www.ancestry.com. Retrieved 2022-02-22.
  15. Genome Decoration Page, NCBI. Ideogram data for Homo sapience (400 bphs, Assembly GRCh38.p3). Last update 2014-03-04. Retrieved 2017-04-26.
  16. Genome Decoration Page, NCBI. Ideogram data for Homo sapience (550 bphs, Assembly GRCh38.p3). Last update 2015-08-11. Retrieved 2017-04-26.
  17. International Standing Committee on Human Cytogenetic Nomenclature (2013). ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013). Karger Medical and Scientific Publishers. ISBN   978-3-318-02253-7.
  18. Sethakulvichai, W.; Manitpornsut, S.; Wiboonrat, M.; Lilakiatsakun, W.; Assawamakin, A.; Tongsima, S. (2012). "Estimation of band level resolutions of human chromosome images". 2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE). pp. 276–282. doi:10.1109/JCSSE.2012.6261965. ISBN   978-1-4673-1921-8. S2CID   16666470.
  19. "p": Short arm; "q": Long arm.
  20. For cytogenetic banding nomenclature, see article locus.
  21. 1 2 These values (ISCN start/stop) are based on the length of bands/ideograms from the ISCN book, An International System for Human Cytogenetic Nomenclature (2013). Arbitrary unit.
  22. gpos: Region which is positively stained by G banding, generally AT-rich and gene poor; gneg: Region which is negatively stained by G banding, generally CG-rich and gene rich; acen Centromere. var: Variable region; stalk: Stalk.

General references: